Законы космоса «Скрытая реальность. Параллельные миры и глубинные законы космоса»: урсс: Книжный дом - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Параллельные 23 5285.26kb.
Освоение космоса 1 88.37kb.
Законы идемпотентности 11 a V a = a 12 a  a = a законы коммутативности 1 61.54kb.
Общие экономические законы 1 94.33kb.
Классный час «Колумб космоса» 1 156.79kb.
Ученые России и Урала 1 99.64kb.
Пред нами тайны обнажатся, Возблещут дальние миры 79 13008.8kb.
Долгая дорога в космос… 1 108.77kb.
Законы массового поражения Усилия законодателей зачастую парализуются... 1 70.12kb.
Тим Шоукросс Пришельцы из космоса 18 4495.09kb.
И., Ануфриев В. П. Восток-Запад. От взаимного интереса к реальному... 1 187.48kb.
Перечень лпу проводящих медицинское обследование иностранных граждан 1 36.85kb.
Направления изучения представлений о справедливости 1 202.17kb.

Законы космоса «Скрытая реальность. Параллельные миры и глубинные законы космоса» - страница №42/42

128

Это вариация на тему знаменитого парадокса брадобрея из Севильи, в котором брадобрей бреет всех, кто не бреет самого себя. Отсюда вопрос: кто бреет брадобрея? (Предполагается, что брадобрей мужчина, ибо если брадобрей женщина, то ответ слишком прост.)



129

Согласно Шмидхуберу, эффективной будет такая стратегия, при которой компьютер будет делать вычисления каждой смоделированной вселенной вперёд во времени способом типа «ласточкин хвост»: первая вселенная будет обновляться на каждом втором такте компьютера, вторая вселенная будет обновляться на каждом втором из оставшихся тактов, третья вселенная будет обновляться на каждом втором из тактов, незадействованных в первых двух вселенных, и так далее. Таким образом, каждая вычислимая вселенная будет моделироваться вперёд во времени в течение произвольно большого количества тактов.



130

При более детальном обсуждении вычислимых и невычислимых функций мы встретимся с функциями, вычислимыми с любой наперёд заданной точностью . Это функции, для которых имеется конечный алгоритм вычисления значений с растущей точностью. Например, это имеет место для вычисления числа π с точностью до определённого количества знаков: компьютер может вычислить в π каждый последующий знак после запятой, хотя никогда не достигнет конца вычислений. Поэтому, хотя π , строго говоря, не является вычислимым числом, оно вычислимо с любой наперёд заданной точностью. Однако большинство вещественных чисел непохожи на π . Они не просто невычислимы, они также невычислимы с любой наперёд заданной точностью.

При рассмотрении «успешных» симуляций мы должны рассматривать те, которые основаны на функциях, вычислимых с любой наперёд заданной точностью. В принципе, убедительная реальность может быть создана на основе частичного результата вычислений на компьютере функций, вычислимых с любой наперёд заданной точностью.

Чтобы законы физики были вычислимы, или даже вычислимы с любой наперёд заданной точностью, следует отказаться от традиции опираться на вещественные числа. Причём не только при описании пространства и времени, где обычно задействуются вещественнозначные координаты, но также для всех остальных математических составляющих законов природы. Например, величина силы электромагнитного поля не должна пробегать вещественные значения, а только принимать набор дискретных значений. То же самое должно выполняться для вероятности нахождения электрона в том или ином месте. Шмидхубер обращает внимание, что все когда-либо проделанные в физике вычисления вовлекают манипуляции с дискретными символами (на бумаге, на доске, на компьютере). Поэтому хотя всегда считалось, что эта часть научной работы использует вещественные числа, на практике оказывается, что это не так. То же самое справедливо для всех когда-либо проведённых измерений. Ни один из приборов не имеет абсолютной точности, поэтому наши измерения всегда выдавали дискретные численные результаты. В этом смысле все успехи в физике можно считать успехами цифровой парадигмы. Тогда возможно, что истинные законы сами являются вычислимыми (или вычислимыми с любой наперёд заданной точностью).

Есть много разных взглядов на «цифровую физику». См., например, книгу С. Вольфрама: Stephen Wolfram, «A New Kind of Science». Champaign, Ill.: Wolfram Media, 2002; и книгу С. Ллойда: Seth Lloyd, «Programming the Universe». New York: Alfred A. Knopf, 2006. Математик Роджер Пенроуз считает, что человеческий разум основывается на невычислимых процессах и, следовательно, Вселенная, в которой мы обитаем, обязана содержать невычислимые математические функции. С этой точки зрения наша Вселенная не соответствует цифровой парадигме. См., например: Penrose Roger, «The Emperor’s New Mind». New York: Oxford University Press, 1989; Penrose Roger, «Shadows of the Mind». New York: Oxford University Press, 1994.

131

Steven Weinberg, «The First Three Minutes». New York: Basic Books, 1973, p. 131.




1 Изобразить искривлённое пространство легче, чем искривлённое время, поэтому во многих популярных изложениях теории гравитации Эйнштейна внимание уделяют только первому. Однако в действительности основной вклад в притяжение хорошо известных нам объектов, таких как Земля и Солнце, вносит кривизна времени, а не пространства. В качестве иллюстрации представьте себе двое часов: одни у земной поверхности, а вторые — на верхнем этаже Эмпайр-стейт-билдинг. Поскольку те часы, которые находятся внизу, расположены ближе к центру Земли, на них действует более мощная сила притяжения, чем на часы, которые размещены высоко над Манхэттеном. Общая теория относительности указывает, что из-за этого скорость течения времени для тех и других часов будет слегка различной: нижние часы будут идти чуть медленнее (на несколько миллиардных долей секунды в год), чем часы на высоте. Эта нестыковка во времени является примером того, что мы имеем в виду, когда говорим об искривлённом времени. Общая теория относительности утверждает, что объекты двигаются в те области пространства, где время течёт медленнее, — в каком-то смысле все объекты «хотят» стареть как можно медленнее. С точки зрения Эйнштейна, это объясняет, почему любой объект падает, когда вы его отпускаете.


2 С учётом предыдущего обсуждения того, что материя искривляет область пространства, в которую она погружена, читателя может удивить, что кривизны нет , хотя материя присутствует. Это объясняется тем, что равномерное распределение материи, как правило, искривляет пространство-время ; в данном частном случае пространственная кривизна равна нулю, а пространственно-временная кривизна не нулевая.


3 Более по́лно чёрные дыры я буду обсуждать в последующих главах. Здесь же будем придерживаться укоренившегося в популярной литературе представления о чёрной дыре как о некоторой пространственной области — можно представить себе шар в пространстве, — гравитационное притяжение которой настолько велико, что ничего из пересекающего её границу не может вырваться обратно. Чем больше масса чёрной дыры, тем больше её размер. Поэтому когда что-нибудь падает в чёрную дыру, то увеличивается не только масса, но и размер чёрной дыры.


4 В отечественной литературе принят введённый И. С. Шкловским термин «реликтовое излучение», которым мы будем пользоваться в оставшейся части книги. (Прим. перев. )


5 Аналогично, сверхбыстрое расширение пространства означает, что регионы, достаточно отдалённые друг от друга в настоящий момент, находились в ранней Вселенной гораздо ближе, чем предсказывает стандартная теория Большого взрыва, обеспечивая таким образом выравнивание температуры до того, как инфляция разметала эти регионы друг от друга.


6 Вы можете подумать, что отрицательное давление втягивает вовнутрь и поэтому противоречит гравитационному отталкиванию, то есть выдавливанию наружу. На самом деле, однородное давление, независимо от знака, вообще не давит и не выталкивает. Барабанные перепонки лопаются, только если оказываемое на них давление неравномерно — с одной стороны меньше, чем с другой. Описываемое здесь отталкивание является гравитационной силой, порождённой однородным отрицательным давлением . Трудный, но ключевой момент для понимания. Я повторюсь: положительная масса или положительное давление приводят к гравитационному притяжению, а отрицательное давление приводит к менее привычному гравитационному отталкиванию.


7 Так как быстрое расширение пространства называется инфляцией, то следуя исторической традиции придумывания названий, поле, обеспечивающее инфляцию, стали называть инфлатоном (по аналогии с фотоном, электроном, нейтроном, мюоном и так далее).


8 Ведущую роль в этих исследованиях сыграли Вячеслав Муханов, Геннадий Чибисов, Стивен Хокинг, Алексей Старобинский, Алан Гут, Co-Янг Пи, Джеймс Бардин, Пол Стейнхард и Майкл Тернер.


9 Аббревиатура от Cosmic Background Explorer. (Прим. ред. )


10 Подчеркнём, что речь идёт о фундаментальных частицах, таких как электроны и кварки, потому что у составных частиц, таких как протоны и нейтроны (состоящих из 3 кварков), значительная часть массы возникает из-за взаимодействия между конституэнтами (энергия глюонов, связывающих кварки внутри протонов и нейтронов, даёт основной вклад в массу этих составных частиц).


11 Перевод М. Лозинского. (Прим. перев. )


12 Если хотите знать, как теория струн преодолевает проблемы, препятствовавшие предыдущим попыткам объединить гравитацию и квантовую механику, смотрите главу 6 книги «Элегантная Вселенная»; краткий обзор вопроса представлен в комментарии 40. Если совсем коротко, то причина в том, что в отличие от частицы, которая находится в одной единственной точке, струна обладает длиной, а потому чуть растянута вдоль некоторой области пространства. В свою очередь такое растяжение ослабляет силу квантовых флуктуаций на малых расстояниях, которые и блокировали предыдущие попытки. К концу 1980-х годов появились сильные аргументы в пользу успешного объединения общей теории относительности и квантовой механики под эгидой теории струн; более поздние исследования добавили значительной убеждённости в этом вопросе (см. главу 9).


13 Можно считать это существенным обобщением результатов, затронутых в главе 4, когда различные формы дополнительных измерений могут приводить к тождественным физическим моделям.


14 Такой результат не является таинственным математическим совпадением. Наоборот, в строгом математическом смысле струны обладают высокосимметричной формой, и именно эта симметрия позволяет устранить все противоречия. Более детальное изложение содержится в комментарии 54.


15 Первая революция началась с работ Джона Шварца и Майкла Грина 1984 года, в которых была дана современная формулировка теории струн.


16 Внимательный читатель заметит, что ломтик хлеба на самом деле трёхмерен (у него есть ширина, длина и толщина), но пусть вас это не беспокоит. Толщина хлебного ломтика напоминает, что ломтики — это визуализация больших три-бран.


17 Вы можете спросить, движется ли всё многомерное пространство. Но каким бы интересным не был этот вопрос, он, однако, не имеет отношения к нашему обсуждению.


18 Для читателей, знакомых с проблемой стрелы времени, отметим, что я предполагаю, в согласии с наблюдательными данными, что энтропия уменьшается по направлению в прошлое. Более подробное описание дано в книге «Ткань космоса», глава 6.


19 Одно пояснение насчёт терминологии. Бо́льшей частью в этой книге термины «космологическая постоянная» и «тёмная энергия» равнозаменяемы. Если требуется большая точность, я говорю о значении космологической постоянной для обозначения количества тёмной энергии, заполняющей пространство. Как было отмечено ранее, физики часто используют термин «тёмная энергия» более свободно, для обозначения всего, что может выглядеть (или маскироваться) как космологическая постоянная на больших временны́х интервалах, однако может медленно меняться и, следовательно, не быть постоянной на самом деле.


20 Именно так работает 3D-технология в кино: подходящим образом подбирая смещение для почти тождественных кадров, кинематографисты заставляют ваш мозг интерпретировать возникающие параллаксы как разные расстояния, создавая таким образом иллюзию ЗD-окружения.


21 Если пространство бесконечно велико, то вы можете спросить, что подразумевают, когда говорят, что Вселенная сейчас больше, чем в прошлом. Ответ состоит в том, что «больше» относится к современным расстояниям между галактиками по сравнению с расстояниями между теми же галактиками в прошлом. Расширение пространства означает, что сейчас галактики более удалены друг от друга, что математически выражается возросшим масштабным фактором Вселенной. В случае бесконечной вселенной «больше» не указывает на общий размер пространства, так как бесконечное всегда остаётся бесконечным. Но для простоты мы будем продолжать говорить об изменении размера Вселенной даже в случае бесконечного пространства, подразумевая при этом изменение расстояния между галактиками.


22 Кембриджский астрофизик Джордж Эфстатиу также одним из первых выдвинул убедительные аргументы в поддержку ненулевой космологической постоянной.


23 В главе 7 вопрос проверки теорий с мультивселенными будет рассматриваться более подробно; также более тщательно будет рассмотрена роль антропных рассуждений в получении потенциально проверяемых предсказаний.


24 Поскольку есть различные взгляды на роль научных теорий в изучении природы, излагаемые мной утверждения могут допускать разную интерпретацию. Есть две выделенные позиции, одну из которых занимают реалисты , уверенные, что математические теории напрямую описывают устройство природы, и инструменталисты , которые верят, что теория является лишь удобным инструментом предсказания того, что измеряют приборы, но при этом ничего не говорит об устройстве самой реальности. В течение десятилетий изнурительных споров, философы от науки развили множество уточнённых вариантов этих направлений и связанных с ними взглядов. Несомненно, моя собственная позиция и подход, развиваемый в этой книге, принадлежат к лагерю реалистов. В этой главе, в которой рассматривается научная состоятельность теорий определённого типа и даётся оценка их значения для понимания природы, поднимаются вопросы, на которые различные философские школы предложили бы существенно разные точки зрения.


25 В мультивселенной с огромным количеством разных вселенных возникает разумное опасение, что независимо от результатов экспериментов и наблюдений, среди гигантского количества вселенных теории найдётся некоторая вселенная, для которой подойдут полученные результаты. Если так, то не будет существовать никакого экспериментального свидетельства, способного доказать неправильность теории; в свою очередь, никакие данные не смогут быть интерпретированы подходящим образом как доказательства в поддержку теории. Мы ещё вернёмся к этому вопросу.


26 Ради простоты мы не будем рассматривать положение электрона в вертикальном направлении, а целиком сосредоточимся на его положении на карте Манхэттена. Позвольте ещё раз подчеркнуть, что хотя из рассуждений этого раздела станет ясно, что уравнение Шрёдингера не позволяет волне мгновенно схлопнуться, как на рис. 8.6, тем не менее, экспериментатор может аккуратно придать волне пикообразную форму (или, более точно, очень близкую к ней форму).


27 Математическое описание приведено в комментарии 92.


28 Такая точка зрения, отвергающая случайность, требует отказа от используемого мной разговорного выражения «волна вероятности» в пользу технического термина «волновая функция».


29 Это не совсем точное определение, но оно вполне подходит для настоящих целей. Мы его скоро уточним.


30 В главе 3 мы обсуждали, что энергия гравитационного поля может быть отрицательной; однако, эта энергия является потенциальной. Энергия, которую мы обсуждаем сейчас, является кинетической, она обусловлена массой электрона и его движением. В классической физике она должна быть положительной.


31 Помимо переворачивания монет можно также менять их расположение, но для демонстрации основных идей этим усложнением можно пренебречь.


32 Если вас, читатель, это заинтересовало, я рекомендую вам отличную книгу Леонарда Сасскинда «Войны чёрных дыр».


33 Читатель, знакомый с чёрными дырами, заметит, что даже без рассмотрения на квантовом уровне, которое приводит к излучению Хокинга, эти две точки зрения будут отличаться по течению времени. С помощью излучения Хокинга различие между двумя точками зрения становится ещё более очевидным.


34 Имеет смысл упомянуть историю, которую я обошёл в этой главе и которая касается давних споров о том, требуется ли из-за чёрных дыр пересмотреть квантовую механику — нарушают ли чёрные дыры, поглощая информацию, способность волн вероятности распространяться вперёд во времени. Если кратко подытожить, то результат Виттена об эквивалентности между чёрной дырой и физической ситуацией, в которой не происходит потери информации (разогретая квантовая теория поля), привёл к окончательному доказательству, что вся падающая в чёрную дыру информация в конечном счёте остаётся доступной внешнему миру. Не требуется никакого пересмотра квантовой механики. С помощью открытия Малдасены было установлено, что граничная теория даёт полное описание информации (энтропии), хранящейся на поверхности чёрной дыры.


35 Забавно, но объяснение, почему магнитные монополи до сих пор не были обнаружены (хотя они предсказываются во многих вариантах единой теории), состоит в том, что они стали очень редкими, растворились в быстро расширяющемся пространстве, как это предписывает инфляционная космология. Гипотеза, которая выдвигается теперь, состоит в том, что магнитные монополи могут инициировать последующие инфляционные эпизоды.


36 Другая лазейка возникает благодаря проблеме измерений, рассмотренной в главе 7. Если число реальных (не виртуальных) вселенных бесконечно (например, если мы часть лоскутной мультивселенной), то будет бесконечно много похожих на наш миров, в которых далёкие потомки смогут запускать симуляции, что приводит к бесконечному числу смоделированных миров. В этом случае снова может казаться, что число смоделированных миров сильно превышает число реальных миров, но, как мы видели в главе 7, сравнение бесконечностей является ненадёжным занятием.


37 Теория с конечным числом состояний в конечном пространственном объёме (в соответствии, например, с ограничениями на энтропию, обсуждавшимися в предыдущей главе) всё равно может содержать непрерывные величины как часть математического аппарата теории. Именно так происходит, например, в квантовой механике: величина волны вероятности может непрерывно изменяться даже тогда, когда возможно лишь конечное число разных результатов.


38 У Борхеса речь шла о книгах, строки в которых написаны любыми возможными символами, неважно со смыслом или нет.


39 При обсуждении лоскутной мультивселенной (в главе 2) я подчеркнул, что квантовая физика утверждает, что в любой конечной области пространства существует лишь конечное число различных способов организации материи. Тем не менее, математический формализм квантовой механики вовлекает непрерывные характеристики, поэтому допустимых значений бесконечно много. Эти характеристики не являются непосредственно наблюдаемыми (подобно высоте волны вероятности в данной точке); конечное число возможностей возникает только по отношению к различным результатам проведённых экспериментов.


40 Макс Тегмарк отметил, что цельная симуляция, выполненная от начала и до конца, сама является набором математических соотношений. Таким образом, если считать, что вся математика реальна, то данный набор также будет реальным. С этой точки зрения нет нужды запускать на самом деле какие-либо компьютерные симуляции, поскольку математические соотношения, к которым они приведут, являются уже реальными. Отметим также, что установка на выполнение симуляции вперёд во времени, пусть даже интуитивная, является излишним ограничением. Вычислимость вселенной должна оцениваться на основе рассмотрения вычислимости математических соотношений, которые определяют полную историю эволюции вселенной, независимо от того, описывают или нет эти соотношения временную эволюцию симуляции.


41 Отметим, как и в главе 7, что для убедительного наблюдательного опровержения инфляции потребуется сравнить бесконечные классы вселенных — а это пока недостижимо для теории. Однако большинство исследователей согласились бы, что если, скажем, данные по реликтовому излучению выглядели бы иначе, чем на рис. 3.4, то их уверенность в инфляции сильно бы уменьшилась, даже если бы теория допускала, что в инфляционной мультивселенной может существовать пузырёк-вселенная с такими данными.


<< предыдущая страница  



Доверяй лишь тем, кто может потерять столько же, сколько ты сам. «Правило Брейлека»
ещё >>