В мешке 24 кг гвоздей. Как, имея только весы без стрелки, отмерить 9 кг гвоздей? - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Название работы Кол-во страниц Размер
Двухметровое правило 1 36.6kb.
Столяр Общая характеристика профессии 1 32.66kb.
Руководство по эксплуатации. Весы мт 0,6- 3 В(1)Д(Ж)а -0/ю описание... 1 72.22kb.
1. Определили содержание своей энциклопедии, ее разделы 1 31.1kb.
Издержки цивилизации Или История одного унитаза Ценить привычные... 1 27.87kb.
В рекламе часов, стрелки всегда показывают на 10: 10? 1 20.88kb.
Что святые говорят о вере. Демон, заслоняющий истину 1 158.79kb.
Инструкция по применению Вы приобрели функциональные весы, которые... 1 31.32kb.
Мотивация в боксе 1 125.92kb.
Конкурс на лучшую танцевальную пару. Аукцион "Кот в мешке". 1 79.05kb.
Мешок подарков 1 41.54kb.
Внеклассное мероприятие по русскому языку: «На чистом русском…» 1 178.34kb.
Направления изучения представлений о справедливости 1 202.17kb.

В мешке 24 кг гвоздей. Как, имея только весы без стрелки, отмерить 9 кг гвоздей? - страница №1/1

Задача 1:
В стакане находятся бактерии. Через секунду каждая из бактерий делится пополам, затем каждая из получившихся бактерий через секунду делится пополам и так далее. Через минуту стакан полон. Через какое время стакан был заполнен наполовину?

Задача 2:


Аня, Ваня и Саня сели в автобус, не имея медных монет, однако сумели заплатить за проезд, потратив по пять копеек каждый. Как им это удалось?

Задача 3:


Из книги выпал кусок, первая страница которого имеет номер 328, а номер последней записывается теми же цифрами в каком-то другом порядке. Сколько страниц в выпавшем куске?

Задача 4:


В мешке 24 кг гвоздей. Как, имея только весы без стрелки, отмерить 9 кг гвоздей?

Задача 5:


Червяк ползет по столбу, начав путь от его основания. Каждый день он проползает вверх на 5 см, а за каждую ночь сползает вниз на 4 см. Когда он достигнет верхушки столба, если его высота равна 75 см?

Задача 6:


В январе некоторого года было четыре пятницы и четыре понедельника. Каким днем недели было 20-е число этого месяца?

Задача 7:


Сколько клеток пересекает диагональ в клетчатом прямоугольнике размерами 199 × 991?

Задача 8:


Из числа 1234512345123451234512345 вычеркните 10 цифр так, чтобы оставшееся число было максимально возможным.

Задача 9:


Петя говорит: позавчера мне еще было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть?

Задача 10:


Петин кот перед дождем всегда чихает. Сегодня он чихнул. «Значит, будет дождь» – думает Петя. Прав ли он?

Задача 11:


Учитель рисует на листке бумаги несколько кружков и спрашивает одного ученика: «Сколько здесь кружков?». «Семь»– отвечает ученик. «Правильно. Так сколько здесь кружков?» – опять спрашивает учитель другого ученика. «Пять» – отвечает тот. «Правильно» – снова говорит учитель. Так сколько же кружков он нарисовал на листке?

Задача 12:


Сын отца профессора разговаривает с отцом сына профессора, причем сам профессор в разговоре не участвует. Может ли такое быть?

Задача 13:


По дороге цепочкой ползут три черепахи. «За мной ползут две черепахи» – говорит первая. «За мной ползет одна черепаха, и передо мной ползет одна черепаха» – говорит вторая. «Передо мной ползут две черепахи, и за мной ползет одна черепаха» – говорит третья. Как такое может быть?

Задача 14:


В поезде едут три мудреца. Внезапно поезд въезжает в туннель, и после того, как загорается свет, каждый из мудрецов видит, что лица его коллег испачканы сажей, влетевшей в окно вагона. Все трое начинают смеяться над своими испачкавшимися попутчиками, однако внезапно самый сообразительный мудрец догадывается, что его лицо тоже испачкано. Как ему это удалось?

Задача 15:


Из стакана молока три ложки содержимого переливают в стакан с чаем и тщательно размешивают смесь. Затем три ложки смеси переливают обратно в стакан с молоком. Чего теперь больше: чая в стакане с молоком или молока в стакане с чаем?

Задача 16:


Составьте из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 магический квадрат, то есть разместите их в таблице 3 × 3 так, чтобы суммы чисел по строкам, столбцам и двум диагоналям были одинаковы.

Задача 17:


В примере на сложение цифры заменили буквами (причем одинаковые цифры – одинаковыми буквами, а разные цифры – разными буквами) и получили: БУЛОК + БЫЛО = МНОГО. Сколько же было булок? Их количество есть максимальное возможное значение числа МНОГО.

Задача 18:


Разведка звездной империи ФИГ-45 перехватила секретное шифрованное сообщение враждебной планеты Медуза: ДУРАК + УДАР = ДРАКА. Известно, что разные цифры зашифрованы разными буквами, а одинаковые цифры – одинаковыми буквами. Два электронных думателя взялись найти решение и получили два разных ответа. Может ли такое быть или один из них надо сдать в переплавку?

Задача 19:


Как разложить по семи кошелькам 127 рублевых бумажек так, чтобы любую сумму от 1 до 127 рублей можно было бы выдать, не открывая кошельков?

Задача 20:


Разрежьте уголок, изображенный на рисунке на четыре таких же уголка вдвое меньшего размера.

Задача 23:


Можно ли расположить 6 длинных круглых карандашей так, чтобы каждый из них касался любого другого?

Задача 24:


При помощи ножниц вырежьте в тетрадном листе дырку, через которую мог бы пролезть слон!

Задача 1:


В магазине «Все для чая» есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

Задача 2:


В магазине «Все для чая» есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?

Задача 3:


В Стране Чудес есть три города: А, Б и В. Из города А в город Б ведет 6 дорог, а из города Б в город В – 4 дороги. Сколькими способами можно проехать от А до В?

Задача 4:


В Стране Чудес есть четыре города: А, Б и В и Г. Из города А в город Б ведет 6 дорог, а из города Б в город В – 4 дороги, Из города А в город Г – две дороги, и из города Г в город В – тоже две дороги. Сколькими способами можно проехать от А до В?

Задача 5:


В магазине «Все для чая» по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?

Задача 6:


Назовем натуральное число «симпатичным» , если в его записи встречаются только нечетные цифры. Сколько существует 4-значных «симпатичных» чисел?

Задача 7:


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

Задача 8:


Каждую клетку квадратной таблицы 2 × 2 можно покрасить в черный или белый цвет. Сколько существует различных раскрасок этой таблицы?

Задача 9:


Сколькими способами можно заполнить одну карточку в лотерее «Спорт-про-г-ноз»? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счет роли не играет).

Задача 10:


Алфавит племени Мумбо-Юмбо состоит из трех букв А, Б и В. Словом является любая последовательность, состоящая не более, чем из 4 букв. Сколько слов в языке племени Мумбо-Юмбо? Указание. Сосчитайте отдельно количества одно-, двух-, трех- и четырехбуквенных слов.

Задача 11:


В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Задача 12:


Сколькими способами можно сделать трехцветный флаг с горизонтальными полосами одинаковой ширины, если имеется материя шести различных цветов?

Задача 13:


Сколькими способами можно поставить на шахматную доску белую и черную ладьи так, чтобы они не били друг друга?

Задача 14:


Сколькими способами можно поставить на шахматную доску белого и черного королей так, чтобы получилась допустимая правилами игры позиция?

Задача 15:


Сколько существует трехзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?

Задача 16:


Сколькими способами можно выложить в ряд красный, черный, синий и зеленый шарики?

Задача 17: Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов сожно составить из слов


а) «ВЕКТОР»;
б) «ЛИНИЯ»;
в) «ПАРАБОЛА»;
г) «БИССЕКТРИСА»;
д) «МАТЕМАТИКА»;

Задача 22:


В стране 20 городов, каждые два из которых соединены авиалинией. Сколько авиалиний в этой стране?

Задача 23:


Сколько диагоналей в выпуклом n-угольнике?

Задача 24:


Бусы – это кольцо, на которое нанизаны бусины. Бусы можно поворачивать, но не переворачивать. Сколько различных бус можно сделать из 13 разноцветных бусин?

Задача 25:


Предположим теперь, что бусы можно и переворачивать. Сколько тогда различных бус можно сделать из 13 разноцветных бусин?

Задача 26:


Сколько существует 6-значных чисел, в записи которых есть хотя бы одна четная цифра?

Задача 27:


В алфавите племени Бум-Бум шесть букв. Словом является любая последовательность из шести букв, в которой есть хотя бы две одинаковые буквы. Сколько слов в языке племени Бум-Бум?

Задача 28:


В киоске «Союзпечать» продаются 5 видов конвертов и 4 вида марок. Сколькими способами можно купить конверт с маркой?

Задача 29:


Сколькими способами можно выбрать гласную и согласную буквы из слова «КРУЖОК»?

Задача 30:


На доске написаны 7 существительных, 5 глаголов и 2 прилагательных. Для предложения нужно выбрать по одному слову каждой из этих частей речи. Сколькими способами это можно сделать?

Задача 31:


У двух начинающих коллекционеров по 20 марок и по 10 значков. Честным обменом называется обмен одной марки на одну марку или одного значка на один значок. Сколькими способами коллекционеры могут осуществить честный обмен?

Задача 32:


Сколько существует 6-значных чисел, все цифры которых имеют одинаковую четность?

Задача 33:


Надо послать 6 срочных писем. Сколькими способами это можно сделать, если для передачи писем можно использовать трех курьеров и каждое письмо можно дать любому из курьеров?

Задача 34:


Сколькими способами из полной колоды (52 карты) можно выбрать 4 карты разных мастей и достоинств?

Задача 35:


На полке стоят 5 книг. Сколькими способами можно выложить в стопку несколько из них (стопка может состоять и из одной книги)?

Задача 36:


Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?

Задача 37:


На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

Задача 38:


Чемпионат России по шахматам проводится в один круг. Сколько играется партий, если участвуют 18 шахматистов?

Задача 39:


Сколькими способами можно поставить на шахматную доску так, чтобы они не били друг друга а) две ладьи; б) двух королей; в) двух слонов; г) двух коней; д) двух ферзей?

Задача 40:


У мамы два яблока, три груши и четыре апельсина. Каждый день в течение девяти дней подряд она дает сыну один из оставшихся фруктов. Сколькими способами это может быть сделано?

Задача 41:


Сколькими способами можно поселить 7 студентов в три комнаты: одноместную, двухместную и четырехместную?

Задача 42:


Сколькими способами можно расставить на первой горизонтали шахматной доски комплект белых фигур (король, ферзь, две ладьи, два слона и два коня)?

Задача 43:


Сколько слов можно составить из пяти букв А и не более чем из трех букв Б?

Задача 44:


Сколько существует 10-значных чисел, в которых имеется хотя бы две одинакоые цифры?

Задача 45:


Каких 7-значных чисел больше: тех, в записи которых есть 1, или остальных?

Задача 46:


Кубик бросают трижды. Среди всех возможных последовательностей результатов есть такие, в которых хотя бы один раз встречается шестерка. Сколько их?

Задача 47:


Сколькими способами можно разбить 14 человек на пары?

Задача 48:


Сколько существует 9-значных чисел, сумма цифр которых четна?
Задача 1:
Сегодня Петина мама сказала: «Все чемпионы хорошо учатся.» Петя говорит: «Я хорошо учусь. Значит, я чемпион.» Правильно ли он рассуждает?

Задача 2:


На столе лежат 4 карточки, на которых сверху написано: А, Б, 4, 5. Какое наименьшее количество карточек и какие именно надо перевернуть, чтобы проверить, верно ли утверждение: «Если на одной стороне карточки написано четное число, то на другой стороне карточки – гласная буква»?

Задача 3:


В кошельке лежат две монеты на общую сумму 15 копеек. Одна из них не пятак. Что это за монеты?

Задача 4:


Предположим, что справедливы следующие утверждения:
а) среди людей, имеющих телевизоры, есть такие, которые не являются малярами;
б) люди, каждый день купающиеся в бассейне, но не являющиеся малярами, не имеют телевизоров.
Следует ли отсюда, что не все владельцы телевизоров каждый день купаются в бассейне?

Задача 5:


В Стране Чудес проводилось следствие по делу об украденной муке. На суде Мартовский Заяц заявил, что муку украл Болванщик. В свою очередь Болванщик и Соня дали показания, которые по каким-то причинам не были записаны. В ходе судебного заседания выяснилось, что муку украл лишь один из трех подсудимых и что только он дал правдивые показания. Кто украл муку?

Задача 6:


В коробке с карандашами есть карандаши разной длины и есть карандаши разного цвета. Докажите, что есть два карандаша, отличающиеся и по цвету и по длине.

Задача 7:


В трех урнах лежат шары: в одной – два белых, в другой – два черных, в третьей – белый и черный. На урнах висят таблички: ББ, ЧЧ и БЧ, так, что содержимое каждой из урн не соответствует табличке. Как, вытащив один шар, определить, в какой урне что лежит?

Задача 8:


Трех людей – А, В и С – усадили в ряд так, что А видит В и С, В видит только С, а С никого не видит. Затем им показали 5 колпаков – 3 красных и 2 белых, завязали глаза и надели каждому на голову красный колпак. После этого им развязали глаза и каждого спросили, может ли он определить цвет своего колпака. После того, как А, а затем и В, ответили отрицательно, С понял, какого цвета на нем колпак. Как он рассуждал?

Задача 9:


В кафе встретились три друга: скульптор Белов, скрипач Чернов и художник Рыжов. «Замечательно, что один из нас блондин, другой – брюнет, а третий – рыжий, и при этом ни у одного из нас цвет не соответствует фамилии» – заметил черноволосый. «Ты прав» – сказал Белов. Определите цвет волос художника.

Задача 10:


Человек А говорит: «Я лжец». Является ли он уроженцем острова рыцарей и лжецов?

Задача 11:


Какой вопрос нужно задать на острове аборигену на острове рыцарей и лжецов, чтобы узнать, куда ведет интересующая нас дорога – в город лжецов или в город рыцарей?

Задача 12:


Какой вопрос нужно задать аборигену на острове рыцарей и лжецов, чтобы узнать, живет ли у него дома ручной крокодил?

Задача 13:


Представьте себе, что на языке острова рыцарей и лжецов слова «да» и «нет» звучат как «тип» и «топ», но не известно, какое именно слово что означает. Как, задав аборигену один вопрос, выяснить у него, лжец он или рыцарь?

Задача 14:


Какой вопрос нужно задать аборигену на острове рыцарей и лжецов, чтобы он обязательно ответил «тип»?

Задача 15:


Остров рыцарей и лжецов. Островитянин А в присутствии другого островитянина В говорит: «По крайней мере один из нас – лжец». Кто такой А и кто такой В?

Задача 16:


Есть три человека: А, В и С, про которых известно, что один из них рыцарь, другой – лжец, а третий – приезжий, нормальный человек, который может и говорить правду и лгать.
А говорит: «Я нормальный человек».
В говорит: «А и С иногда говорят правду».
С говорит: «В – нормальный человек».
Кто из них лжец, кто – рыцарь, а кто – кормальный человек?

Задача 17:


Встретились несколько аборигенов, и каждый из них заявил всем остальным: «Вы все – лжецы». Сколько рыцарей могло быть среди этих аборигенов?
Задача 64:
Если каждый мальчик купит пирожок, а каждая девочка – булочку, то они потратят вместе на одну копейку меньше, чем если бы каждый мальчик купил булочку, а каждая девочка – пирожок. Известно, что мальчиков больше, чем девочек. На сколько?

Задача 65:


175 Шалтаев стоят дороже, чем 125, но дешевле, чем 126 Болтаев. Докажите, что на трех Шалтаев и одного Болтая рубля не хватит.

Задача 66:


В классе каждый мальчик дружит с тремя девочками, а каждая девочка – с двумя мальчиками. При этом в классе всего 19 парт и 31 пионер. Сколько в классе учеников?

Задача 67:


Две команды разыграли первенство школы в десяти видах, причем за победу команда получала 4 очка, за ничью – 2 и за проигрыш – 1 очко. Вместе обе команды набрали 46 очков. Сколько было ничьих?

Задача 68:


Четверо товарищей купили вместе лодку. Первый внес половину суммы, внесенной остальными; второй – треть суммы, внесенной остальными; третий – четверть суммы, внесенной остальными, а четвертый внес 130 рублей. Сколько стоит лодка и сколько внес каждый?

Задача 69:


На дороге, соединяющей два аула, нет горизонтальных участков. Автобус идет в гору всегда со скоростью 15 км/ч, а под гору – 30 км/ч. Найдите расстояние между аулами, если известно, что путь туда и обратно автобус проезжает за 4 часа.
Задача 74:
Существуют ли такие целые числа a и b, отличные от нуля, что одно из них делится на их сумму, а другое – на их разность?




Между любовью и сексом большая разница: секс снимает чувство неловкости, любовь его порождает. Вуди Аллен
ещё >>