Учебное пособие (выборочные главы) «Финансовая математика» - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
С. А. Долгосрочная и краткосрочная финансовая политика предприятия... 5 779.56kb.
Учебное пособие Санкт-Петербург 2012 18 3455.98kb.
Учебно-методическое пособие по предмету «Математика» 1 143.54kb.
Ю. А. Психология театра: Учебное пособие. Спб.: Ивэсэп, Данное учебное... 3 841.44kb.
Учебное пособие: «Математика (Виленкин Н. Я.)» 1 77.91kb.
Учебное пособие (075) Печатается 20 5189.84kb.
Учебное пособие по коллоидной химии для самоподготовки студентов. 3 425.42kb.
Учебное пособие по коллоидной химии для самоподготовки студентов. 5 511.28kb.
Учебное пособие «Вычислительная математика и программирование, 10-11 кл. 5 1174.81kb.
Егорова Н. Ю. С. Д., Бобров В. А. Менеджмент в домашнем хозяйстве... 25 6501kb.
Учебное пособие для студентов специальности 2201 (Вычислительные... 11 1950.82kb.
Финансовый анализ инвестиционных проектов правила инвестирования 1 164.74kb.
Направления изучения представлений о справедливости 1 202.17kb.

Учебное пособие (выборочные главы) «Финансовая математика» - страница №1/7





http://irbis.asu.ru/mmc/econ/u_finmath/
Коптева Н.В., Семенов С.П.

Учебное пособие (выборочные главы)
«Финансовая математика»




Часть 1. Теоретические основы финансово-коммерческих вычислений

1.1. Фактор времени в финансово-коммерческих расчетах


Российская экономика все более интегрируется в мировую экономику, что требует использования финансового инструментария, применяемого развитыми странами и международными организациями в финансовой практике. Становление рыночных отношений в России сопровождается появлением навыков и методов, которыми приходится овладевать для оценки инвестиционных проектов, в операциях на рынке ценных бумаг, в ссудо-заемных операциях, в оценке бизнеса и др. Кардинальное изменение банковской системы, внедрение новых форм собственности, развитие фондового рынка и финансовой самостоятельности предприятий сделали актуальным управление финансовыми ресурсами, одним из краеугольных элементов которого являются финансовые вычисления, базирующиеся на понятии временной ценности денег.

Известный всем лозунг "время – деньги" имеет под собой реальную основу, позволяющую определить истинную ценность денег с позиции текущего момента. Важность учета фактора времени обусловлена принципом неравноценности денег, относящихся к различным моментам времени: равные по абсолютной величине денежные суммы "сегодня" и "завтра" оцениваются по разному, – сегодняшние деньги ценнее будущих. Отмеченная зависимость обусловлена влиянием фактора времени:


  • во-первых, деньги можно продуктивно использовать во времени как приносящий доход финансовый актив, т.е. деньги могут быть инвестированы и тем самым принести доход. Рубль в руке сегодня стоит больше, чем рубль, который должен быть получен завтра ввиду процентного дохода, который вы можете получить, положив его на сберегательный счет или проведя другую инвестиционную операцию;

  • во-вторых, инфляционные процессы ведут к обесцениванию денег во времени. Сегодня на рубль можно купить товара больше, чем завтра на этот же рубль, т.к. цены на товар повысятся;

  • в-третьих, неопределенность будущего и связанный с этим риск повышает ценность имеющихся денег. Сегодня рубль в руке уже есть и его можно израсходовать на потребление, а будет ли он завтра в руке, – еще вопрос.

Существуют два подхода и соответствующие им два типа экономического мышления:

  • статический подход не учитывает фактор времени, – в соответствии с этим, здесь возможно оперирование денежными показателями, относящимися к различным периодам времени, и их суммирование;

  • динамический подход используется в финансовом анализе и финансовом менеджменте, где фактор времени играет решающую роль и его необходимо обязательно учитывать, поэтому здесь неправомерно суммировать денежные величины, относящиеся к различным моментам времени.

Эти два подхода соответствуют "бухгалтерскому" и "экономическому" принципам анализа затрат. Именно динамический подход предполагает включение в расходы так называемых неявных затрат, определяемых на основе принципа альтернативной ценности.

1.3. Основные категории в финансово-экономических расчетах


В финансовой математике широко представлены все виды статистических показателей: абсолютные, относительные и средние величины.

Процентные деньги или просто проценты в финансовых расчетах представляют собой абсолютную величину дохода (приращение денег) от предоставления денег в долг в любой его форме (причем эта финансовая операция может реально и не состояться). Таким образом, проценты можно рассматривать как абсолютную "цену долга", которую уплачивают за пользование денежными средствами. Абсолютные показатели чаще всего не подходят для сравнения и оценки ввиду их несопоставимости в пространстве и во времени. Поэтому в финансово-коммерческих расчетах широко пользуются относительными показателями.

Относительный показатель, характеризующий интенсивность начисления процентов за единицу времени, – процентная ставка. Методика расчета проста: отношение суммы процентных денег, выплачивающихся за определенный период времени, к величине ссуды. Этот показатель выражается либо в долях единицы, либо в процентах. Процентная ставка показывает, сколько денежных единиц должен заплатить заемщик за пользование в течение определенного периода времени 100 единицами первоначальной суммы долга.

Начисление процентов, как правило, производится дискретно, т.е. за фиксированные одинаковые интервалы времени, которые носят название "период начисления", – это отрезок времени между двумя следующими друг за другом процедурами взимания процентов. Обычные или декурсивные (postnumerando) проценты начисляются в конце периода. В качестве единицы периода времени в финансовых расчетах принят год, однако это не исключает использования периода менее года: полугодие, квартал, месяц, день, час. Период времени от начала финансовой операции до ее окончании называется сроком финансовой операции.

Для рассмотрения формул, используемых в финансовой математике, необходимо ввести ряд условных обозначений:

I – проценты за весь срок ссуды (interest);

PV – первоначальная сумма долга или современная (текущая) стоимость (present value);

i – ставка процентов за период (interest rate);

FV – наращенная сумма или будущая стоимость (future value), т.е. первоначальная сумма долга с начисленными на нее процентами к концу срока ссуды;

n – срок ссуды в годах.

Увеличение суммы долга в связи с присоединением к ней процентных денег называется наращением, а увеличенная сумма – наращенной суммой. Отсюда можно выделить еще один относительный показатель, который называется коэффициент наращения или множитель наращения, – это отношение наращенной суммы к первоначальной сумме долга. Коэффициент наращения показывает, во сколько раз наращенная сумма больше первоначальной суммы долга, т.е. по существу является базисным темпом роста.

Существуют различные способы начисления процентов и соответствующие им виды процентных ставок. Простая процентная ставка применяется к одной и той же первоначальной сумме долга на протяжении всего срока ссуды, т.е. исходная база (денежная сумма) всегда одна и та же. Сложная процентная ставка применяется к наращенной сумме долга, т.е. к сумме, увеличенной на величину начисленных за предыдущий период процентов, – таким образом, исходная база постоянно увеличивается. Фиксированная процентная ставка – ставка, зафиксированная в виде определенного числа в финансовых контрактах. Постоянная процентная ставка – неизменная на протяжении всего периода ссуды. Переменная процентная ставка – дискретно изменяющаяся во времени, но имеющая конкретную числовую характеристику. Плавающая процентная ставка – привязанная к определенной величине, изменяющейся во времени, включая надбавку к ней (маржу), которая определяется целым рядом условий (сроком операции и т.п.). Основу процентной ставки составляет базовая ставка, которая является начальной величиной.



Глава 2. Операции наращения
2.1. Простые проценты


следующая страница >>



Мы матом не ругаемся — мы им разговариваем. Приписывается Александру Леб
ещё >>