Учебное пособие Для студентов вузов 2-е издание, переработанное и дополненное - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Учебное пособие в помощь студентам-заочникам Издание 2-е, исправленное... 10 820.54kb.
Е. И. Рогов настольная книга практического психолога учебное пособие... 35 8042.44kb.
Учебное пособие Санкт-Петербург 2012 18 3455.98kb.
Учебное пособие Ставрополь 2005 (075. 8) Бкк 28. 072 Я 73 Б63 1 271.35kb.
Руководство по изучению рыб (преимущественно пресноводных) Четвертое... 25 5647.28kb.
Учебное пособие для студентов / В. Н. Быков и др.; отв ред. 1 29.28kb.
Учебное пособие по философии представляет собой переработанное и... 24 5833.72kb.
Учебное пособие для студентов педагогических вузов 40 2879.76kb.
Е. И. Каширина Международное гуманитарное право в вопросах и ответах... 1 162.33kb.
Учебное пособие для экономических вузов и специальностей издание... 50 10517.43kb.
Учебное пособие для студентов отделения Лечебное Дело, Сестринское... 1 312.29kb.
Всю жизнь цветы не оставляют 1 307.82kb.
Направления изучения представлений о справедливости 1 202.17kb.

Учебное пособие Для студентов вузов 2-е издание, переработанное и дополненное - страница №1/12



ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Кемеровский технологический институт

пищевой промышленности




В.Ф. Юстратова, Г.Н. Микилева, И.А. Мочалова

АНАЛИТИЧЕСКАЯ ХИМИЯ


Количественный химический анализ
Учебное пособие
Для студентов вузов
2-е издание, переработанное и дополненное
Рекомендовано сибирским региональным учебно-методическим центром

высшего профессионального образования для межвузовского использования

в качестве учебного пособия по аналитической химии для студентов, обучающихся по направлениям подготовки 552400 «Технология продуктов питания», 655600 «Производство продуктов питания из растительного сырья»,

655900 «Технология сырья, продуктов животного происхождения»

и 655700 «Технология продовольственных продуктов

специального назначения и общественного питания»

Кемерово 2005



УДК 543.062 (07)

ББК 24.4 я 7


Ю90

Авторы:

В.Ф. Юстратова, Г.Н. Микилева, И.А. Мочалова


Под редакцией В.Ф. Юстратовой
Рецензенты:

В.А. Невоструев, зав. кафедрой аналитической химии

Кемеровского государственного университета, д-р хим. наук, профессор;



А.И. Герасимова, доцент кафедры химии и технологии

неорганических веществ Кузбасского государственного технического

университета, канд. хим. наук
Рекомендовано редакционно-издательским советом

Кемеровского технологического института

пищевой промышленности
Юстратова В.Ф., Микилева Г.Н., Мочалова И.А.

Ю90 Аналитическая химия. Количественный химический анализ: Учеб. пособие. - 2-е изд., перераб. и доп. - / В.Ф. Юстратова, Г.Н. Микилева, И.А. Мочалова; Под ред. В.Ф. Юстратовой; Кемеровский технологический институт пищевой промышленности - Кемерово, 2005. - 160 с.

ISBN 5-89289-312-Х
Изложены основные понятия и разделы аналитической химии. Подробно рассмотрены все стадии количественного химического анализа от отбора пробы до получения результатов и способов их обработки. В пособие включена глава, посвященная инструментальным методам анализа, как наиболее перспективным. Указано использование каждого из описанных методов в технохимическом контроле пищевой промышленности.

Учебное пособие составлено в соответствии с государственными образовательными стандартами по направлениям «Технология продуктов питания», «Производство продуктов питания из растительного сырья и продуктов животного происхождения», «Технология продовольственных продуктов специального назначения и общественного питания». Содержит методические рекомендации студентам по конспектированию лекций и работе с учебником.

Предназначено для студентов всех форм обучения.

УДК 543.062 (07)

ББК 24.4 я 7


ISBN 5-89289-312-Х

© В.Ф. Юстратова, Г.Н. Микилева, И.А. Мочалова, 1994

© В.Ф. Юстратова, Г.Н. Микилева, И.А. Мочалова, 2005, дополнение

© КемТИПП, 1994



ПРЕДИСЛОВИЕ

Учебное пособие предназначено для студентов технологических специальностей вузов пищевого профиля. Издание второе, переработанное и дополненное. При переработке материала учтены советы и замечания заведующего кафедрой аналитической химии Воронежской государственной технологической академии, заслуженного деятеля науки и техники РФ, доктора химических наук, профессора Я.И. Коренмана. Авторы выражают ему огромную благодарность.

За прошедшие десять лет со времени опубликования первого издания появились новые учебники по аналитической химии, но ни один из них в полной мере не соответствует Государственным образовательным стандартам по направлениям «Технология продуктов питания», «Производство продуктов питания из растительного сырья», «Технология сырья и продуктов животного происхождения», «Технология продовольственных продуктов специального назначения и общественного питания».

В пособии материал изложен так, чтобы студент увидел «задание аналитической химии» в целом: от отбора пробы до получения результатов анализа, способов их обработки и аналитической метрологии. Дана краткая история развития аналитической химии, её роль в производстве продуктов питания; приведены основные понятия качественного и количественного химических анализов, способы выражения состава растворов и приготовления растворов, формулы расчета результатов анализа; теория методов титриметрического анализа: нейтрализации (кислотно-основного титрования), редоксиметрии (окислительно-восстановительного титрования), комплексонометрии, осаждения и гравиметрии. Указано применение каждого из них в пищевой промышленности. При рассмотрении титриметрических методов анализа предложена структурно-логическая схема, упрощающая их изучение.

При изложении материала учтена современная номенклатура химических соединений, современные общепринятые понятия и представления, для аргументации выводов использованы новые научные данные.

В пособие дополнительно включена глава, посвященная инструментальным методам анализа, как наиболее перспективным, и показаны современные тенденции развития аналитической химии.

По форме изложения текст пособия адаптирован для студентов I-II курсов, еще недостаточно владеющих навыками самостоятельной работы с учебной литературой.

В приложении даны рекомендации студентам по конспектированию лекций и работе с учебником.

Разделы 1, 2, 5 написаны В.Ф. Юстратовой, разделы 3, 6, 8, 9 - Г.Н. Микилевой, раздел 7 - И.А. Мочаловой, раздел 4 - Г.Н. Микилевой и И.А. Мочаловой.

Данное пособие можно рекомендовать и студентам вузов других нехимических специальностей.



1. АНАЛИТИЧЕСКАЯ ХИМИЯ КАК НАУКА
Аналитическая химия представляет собой один из разделов химии. Если давать наиболее полное определение аналитической химии как науки, то можно воспользоваться определением, предложенным академиком И.П. Алимариным.

«Аналитическая химия - это наука, развивающая теоретические основы анализа химического состава веществ, разрабатывающая методы идентификации и обнаружения, определения и разделения химических элементов, их соединений, а также методы установления химического строения соединений».

Это определение достаточно объемное и труднозапоминаемое. В вузовских учебниках приводятся более сжатые определения, смысл которых заключается в следующем.



Аналитическая химия - это наука о методах определения химического состава и структуры веществ (систем).
1.1. Из истории развития аналитической химии
Аналитическая химия - очень древняя наука.

Как только в обществе появились товары и материалы, важнейшими из которых были золото и серебро, появилась необходимость проверять их качество. Первой получившей распространение методикой анализа этих металлов было купелирование - испытание огнем. Эта количественная методика предусматривает взвешивание анализируемого вещества до и после нагрева. Упоминание об этой операции найдено в табличках из Вавилона, датированных 1375-1350 гг. до н.э.

Весы человечеству известны еще до времен античной цивилизации. Найденные гири для весов датируются 2600 г. до н.э.

Согласно общепринятой точке зрения, начальным рубежом, когда отдельные аналитические приемы оформились в научные методы, можно считать эпоху Возрождения.

Но термин «анализ» в современном понимании этого слова введен английским химиком Робертом Бойлем (1627-1691). Впервые он употребил этот термин в 1654 г.

Быстрое развитие аналитической химии началось с конца XVII в. в связи с появлением мануфактур, быстрого роста их числа. Это вызвало к жизни разнообразные проблемы, решить которые можно было только, используя аналитические методы. Сильно возросла потребность в металлах, в частности, в железе, что способствовало развитию аналитической химии минералов.

Химический анализ возведен в статус отдельной ветви науки - аналитическую химию - шведским ученым Торнберном Бергманом (1735-1784). Работы Бергмана можно считать первым учебником аналитической химии, в котором дается систематический обзор используемых в аналитической химии процессов, объединенных в соответствии с природой анализируемых веществ.

Первой из известных книг, полностью посвященных аналитической химии, является «Полная химическая пробирная палата», написанная Иоганом Гётлингом (1753-1809) и вышедшая в 1790 г. в Иене.

Огромное количество реагентов, применяемых для качественного анализа, систематизировано Генрихом Розе (1795-1864) в его книге «Руководство по аналитической химии». Отдельные главы этой книги посвящены некоторым элементам и известным реакциям этих элементов. Таким образом, Розе в 1824 г. первым описал реакции индивидуальных элементов и дал схему систематического анализа, сохранившуюся в основных чертах до наших дней (о систематическом анализе см. раздел 1.6.3).

В 1841 г. опубликовано «Руководство по качественному химическому анализу» Карла Фрезениуса (1818-1897). Эта книга является одной из наиболее удачных из числа всех когда-либо написанных книг по аналитической химии.

В 1862 г. вышел первый номер «Журнала аналитической химии» - журнала, посвященного исключительно аналитической химии, который издается до наших дней. Журнал был основан Фрезениусом и вышел в Германии.

Основы весового (гравиметрического) анализа - самого старого и наиболее логичного метода количественного анализа - заложены Т. Бергманом.

Методы объемного анализа широко стали входить в аналитическую практику лишь в 1860 г. Описание этих методов появилось в учебниках. К этому времени были разработаны приборы (приспособления) для титрования и дано теоретическое обоснование этих методов.

К основным открытиям, позволившим сделать теоретическое обоснование объемных методов анализа, нужно отнести закон сохранения массы вещества, открытый М.В. Ломоносовым (1711-1765), периодический закон, открытый Д.И. Менделеевым (1834-1907), теорию электролитической диссоциации, разработанную С. Аррениусом (1859-1927).

Основы объемных методов анализа закладывались в течение почти двух столетий, и разработка их тесно связана с запросами практики, в первую очередь, проблемами беления тканей и производства поташа.

Датой рождения объемного анализа можно считать 1729 г. В этом году Клод Жозеф Жоффруа (1683-1752) представил во Французскую академию диссертацию, тема которой было определение концентрации уксуса.

Многие годы ушли на разработку удобных, точных приборов, отработку операций градуировки мерной посуды, манипуляций при работе с точной посудой, способов фиксирования конца титрования.

Не удивительно, что даже в 1829 г. Берцелиус (1779-1848) считал, что объемные методы анализа могут быть допущены лишь для приблизительных оценок.

Впервые общепринятые теперь в химии термины «пипетка» (рис. 1) (от французского pipe - трубка, pipette - трубочки) и «бюретка» (рис. 2) (от французского burette - склянка) встречаются в публикации Ж.Л. Гей-Люссака (1778-1850), напечатанной в 1824 г. Здесь же он описал операцию титрования в таком виде, как это делается сейчас.

Рис. 1. Пипетки Рис. 2. Бюретки


1859 г. оказался для аналитической химии знаменательным. Именно в этом году Г. Кирхгоф (1824-1887) и Р. Бунзен (1811-1899) разработали спектральный анализ и превратили его в практический метод аналитической химии. Спектральный анализ был первым из инструментальных методов анализа, положившим начало их бурному развитию. Подробнее об этих методах анализа см. раздел 8.

В конце XIX в., в 1894 г., немецкий физико-химик В.Ф. Оствальд опубликовал книгу о теоретических основах аналитической химии, основополагающей теорией в которой являлась теория электролитической диссоциации, на которой до сих пор базируются химические методы анализа.

Начавшийся ХХ в. (1903 г.) ознаменовался открытием русского ботаника и биохимика М.С. Цвета явления хроматографии, явившегося базой для развития разных вариантов хроматографического метода, развитие которого продолжается до сих пор.

В ХХ в. аналитическая химия развивалась достаточно успешно. Шло развитие как химических, так и инструментальных методов анализа. Развитие инструментальных методов происходило за счет создания уникальных приборов, позволяющих фиксировать индивидуальные свойства анализируемых компонентов.

Русские ученые внесли большой вклад в развитие аналитической химии. Следует, прежде всего, назвать имена Н.А. Тананаева, И.П. Алимарина, А.К. Бабко, Ю.А. Золотова и многих других.

Развитие аналитической химии всегда происходило с учетом двух факторов: развивающаяся промышленность формировала проблему, требующую решения, с одной стороны; с другой - открытия науки приспосабливались к решению задач аналитической химии.

Эта тенденция сохраняется и поныне. В анализе широко используются компьютеры, лазеры, появляются новые методы анализа, внедряются автоматизация и математизация, создаются приемы и средства локального нераз-рушающего, дистанционного, непрерывного анализа.

1.2. Общие задачи аналитической химии


Общие задачи аналитической химии:

  1. Развитие теории химических и физико-химических методов анализа, научное обоснование, разработка и совершенствование приемов и методов исследования.

  2. Разработка методов разделения веществ и методов концентрирования микропримесей.

  3. Совершенствование и разработка методов анализа природных веществ, окружающей среды, технических материалов и т.д.

  4. Обеспечение химико-аналитического контроля в процессе проведения разнообразных научно-исследовательских работ в области химии и смежных областях науки, промышленности и техники.

  5. Поддержание химико-технологических и физико-химических процессов производства на заданном оптимальном уровне на основе систематического химико-аналитического контроля всех звеньев промышленного производства.

  6. Создание методов автоматического контроля технологических процессов, сочетающихся с системами управления на основе использования электронных вычислительных, регистрирующих, сигнализирующих, блокирующих и управляющих машин, приборов и аппаратов.

Из изложенного видно, что возможности аналитической химии широки. Это позволяет использовать ее для решения самых различных практических задач, в том числе в пищевой промышленности.

1.3. Роль аналитической химии в пищевой промышленности


Методы аналитической химии позволяют решать в пищевой промышленности следующие задачи:

  1. Определять качество сырья.

  2. Контролировать процесс производства продуктов питания на всех его стадиях.

  3. Контролировать качество выпускаемой продукции.

  4. Анализировать отходы производства с целью их утилизации (дальнейшего использования).

  5. Определять в сырье и пищевых продуктах вещества токсичные (вредные) для организма человека.

1.4. Метод анализа
Аналитическая химия изучает методы анализа, различные аспекты их разработки и применения. Согласно рекомендациям авторитетной международной химической организации ИЮПАК, методом анализа называют принципы, положенные в основу анализа вещества, т.е. вид и природу энергии, вызывающей возмущение химических частиц вещества. Принцип анализа определяется в свою очередь явлениями природы, на которых основаны химические или физические процессы.

В учебной литературе по химии определение метода анализа, как правило, не дается. Но поскольку оно является достаточно важным, то его необходимо сформулировать. На наш взгляд, наиболее приемлемым определением можно считать следующее:



Метод анализа - это сумма правил и приемов выполнения анализа, позволяющих определить химический состав и структуру веществ (систем).

1.5. Классификация методов анализа


В аналитической химии существует несколько видов классификации методов анализа.
1.5.1. Классификация, основанная на химических и физических свойствах анализируемых веществ (систем)
В рамках этой классификации рассматривают следующие группы методов анализа:

  1. Химические методы анализа.

К этой группе методов анализа относятся такие, в которых результаты анализа основываются на химической реакции, протекающей между веществами. По окончании реакции фиксируют объем одного из участников реакции или массу одного из продуктов реакции. Затем рассчитывают результаты анализа.

  1. Физические методы анализа.

Физические методы анализа основаны на измерении физических свойств анализируемых веществ. Наиболее широко эти методы фиксируют оптические, магнитные, электрические, тепловые свойства.

3. Физико-химические методы анализа.

Они основаны на измерении какого-либо физического свойства (параметра) анализируемой системы, изменяющегося под влиянием протекающей в ней химической реакции.
_________

ИЮПАК - Международный союз теоретической и прикладной химии. Членами этой организации являются научные учреждения многих стран. Российская Академия Наук (как преемница АН СССР) состоит в ней с 1930 г.

В современной химии физические и физико-химические методы анализа называют инструментальными методами анализа. «Инструментальный» означает, что провести этот метод анализа можно только с применением «инструмента» - прибора, способного регистрировать и оценивать физические свойства (подробно см. раздел 8).



  1. Методы разделения.

При анализе сложных смесей (а это большинство природных объектов и пищевых продуктов) бывает необходимо отделить определяемый компонент от мешающих компонентов.

Иногда в анализируемом растворе определяемого компонента намного меньше, чем можно определить выбранным методом анализа. В этом случае перед определением таких компонентов необходимо проводить их концентрирование.



Концентрирование - это операция, после проведения которой концентрация определяемого компонента может увеличиться от n до 10n раз.

Операции разделения и концентрирования часто совмещаются. На стадии концентрирования в анализируемой системе может отчетливо проявиться какое-то свойство, фиксирование которого позволит решить вопрос о количестве анализируемого вещества в смеси. Метод анализа может начинаться с операции разделения, иногда он включает и концентрирование.


1.5.2. Классификация, основанная на массе вещества или объеме

раствора, взятых для анализа


Классификация, демонстрирующая возможности современных методов анализа представлена в табл. 1. Она основана на массе веществ или объеме раствора, взятых для анализа.

Таблица 1


Классификация методов анализа в зависимости от массы вещества

или объема раствора, взятых для анализа




Название

Количество вещества

г

см3

Грамм-метод

(макроанализ)

1,0-10

10-102

Сантиграмм-метод

(полумикроанализ)

0,05-0,5

1,0-10

Миллиграмм-метод

(микроанализ)

10-3-10-6

10-1-10-4

Микрограмм-метод

(ультрамикроанализ)

10-6-10-9

10-4-10-6

Нанограмм-метод

(субмикроанализ)

10-9-10-11

10-7-10-10

Пикограмм-метод

(ультрасубмикроанализ)

10-12

10-10

1.6. Качественный анализ


Анализ вещества можно проводить с целью установления качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализы.

Задачей качественного анализа является установление химического состава анализируемого объекта.

Анализируемый объект может быть индивидуальным веществом (простым или очень сложным, например, хлеб), а также смесью веществ. В составе объекта могут интересовать разные его составляющие. Можно определять, из каких ионов, элементов, молекул, фаз, групп атомов состоит анализируемый объект. В продуктах питания чаще всего определяют ионы, простые или сложные вещества, которые являются либо полезными (Ca2+, NaCl, жир, белок и др.), либо вредными для организма человека (Cu2+, Pb2+, пестициды и др.). Это можно осуществлять двумя способами: идентификацией и обнаружением.

Идентификация - установление идентичности (тождества) исследуемого химического соединения с известным веществом (эталоном) путем сравнения их физических и химических свойств.

Для этого предварительно изучают определенные свойства заданных эталонных соединений, присутствие которых предполагают в анализируемом объекте. Например, проводят химические реакции с катионами или анионами (эти ионы являются эталонами) при исследовании неорганических веществ либо измеряют физические константы эталонных органических веществ. Затем выполняют те же испытания с исследуемым соединением и сопоставляют полученные результаты.



Обнаружение - проверка присутствия в анализируемом объекте тех или иных основных компонентов, примесей и др.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое-нибудь новое соединение, обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т.д. Эти характерные свойства называют аналитическими признаками.

Химическую реакцию, при проведении которой проявляются аналитические признаки, называют качественной аналитической реакцией.

Вещества, применяемые для проведения аналитических реакций, называют реактивами или реагентами.

Качественные аналитические реакции и, соответственно, реактивы, используемые в них, в зависимости от области применения делят на групповые (общие), характерные и специфические.

Групповые реакции позволяют выделить из сложной смеси веществ под воздействием группового реагента целые группы ионов, имеющие одинаковый аналитический признак. Например, к групповым реагентам относится карбонат аммония (NH4)2CO3, так как с ионами Ca2+, Sr2+, Ba2+ он образует белые нерастворимые в воде карбонаты.

Характерными называют такие реакции, в которых участвуют реактивы, взаимодействующие с одним или небольшим числом ионов. Аналитический признак в этих реакциях, чаще всего, выражен характерным цветом. Например, диметилглиоксим - характерный реактив на ион Ni2+ (осадок розового цвета) и на ион Fe2+ (растворимое в воде соединение красного цвета).

Наиболее важными в качественном анализе являются специфические реакции. Специфической реакцией на данный ион называется такая реакция, которая позволяет обнаружить его в условиях опыта в смеси с другими ионами. Такой реакцией является, например, реакция обнаружения иона , про-текающая под действием щелочи при нагревании:


.
Выделяющийся аммиак можно определить по специфическому, легко узнаваемому запаху и другим свойствам.
1.6.1. Марки реактивов
В зависимости от конкретной области применения реактивов к ним предъявляется ряд требований. Одним из них является требование о количестве примесей.

Количество примесей в химических реактивах регламентируется специальной технической документацией: государственными стандартами (ГОСТ), техническими условиями (ТУ) и др. Состав примесей может быть различным, и он, как правило, указывается на заводской этикетке реактива.

Химические реактивы классифицируют по степени чистоты. В зависимости от массовой доли примесей реактиву присваивают марку. Некоторые марки реактивов представлены в табл. 2.

Таблица 2


Марки реактивов


Марка реактива

Обозначение

марки реактива



Массовая доля

примесей


Технический

т.

больше 2

Чистый

ч.

до 2

Чистый для анализа

ч.д.а.

до 1

Химически чистый

х.ч.

меньше 1

Высоко-эталонно чистый

в.э.ч.

от 0,01 до 0,00001

Особо чистый

ос.ч.

Обычно в практике химического анализа используют реактивы, отвечающие квалификации «ч.д.а» и «х.ч.». Чистота реактивов указывается на этикетке заводской упаковки реактива. В некоторых областях промышленности вводят свои дополнительные квалификации реактивов по чистоте.


1.6.2. Способы выполнения аналитических реакций
Аналитические реакции можно выполнять «мокрым» и «сухим» способами. При выполнении реакции «мокрым» путем взаимодействие анализируемого вещества и соответствующих реагентов происходит в растворе. Для осуществления ее исследуемое вещество должно быть предварительно растворено. Растворителем обычно служит вода или, если вещество в воде нерастворимо, другой растворитель. Реакции «мокрым» путем происходят между простыми или сложными ионами, поэтому, применяя их, обнаруживаются именно эти ионы.

«Сухой» способ выполнения реакций означает, что исследуемое вещество и реагенты берут в твердом состоянии и реакцию между ними осуществляют, нагревая их до высокой температуры.

Примерами реакций, выполняемых «сухим» путем, являются реакции окрашивания пламени солями некоторых металлов, образования окрашенных перлов (стекол) тетрабората натрия (буры) или гидрофосфата натрия и аммония при сплавлении их с солями некоторых металлов, а также сплавление исследуемого твердого вещества с «плавнями», например: смесями твердых Na2CO3 и К2СО3, или Na2CO3 и KNO3.

К реакциям, выполняемым «сухим» путем, относится также реакция, происходящая при растирании исследуемого твердого вещества с каким-либо твердым реагентом, в результате которой смесь приобретает окраску.


1.6.3. Систематический анализ
Качественный анализ объекта можно проводить двумя разными методами.

Систематический анализ - это метод проведения качественного анализа по схеме, когда последовательность выполнения операций добавления реактивов строго определена.
1.6.4. Дробный анализ
Метод анализа, основанный на применении реакций, при помощи которых можно в любой последовательности обнаружить искомые ионы в отдельных порциях исходного раствора, т.е. не прибегая к определенной схеме обнаружения ионов, называют дробным анализом.

1.7. Количественный анализ


Задачей количественного анализа является определение содержания (массы или концентрации) того или иного компонента в анализируемом объекте.

Важными понятиями количественного анализа являются понятия «определяемое вещество» и «рабочее вещество».

1.7.1. Определяемое вещество. Рабочее вещество
Химический элемент, ион, простое или сложное вещество, содержание которого определяют в данном образце анализируемого продукта, принято называть «определяемым веществом» (О.В.).

Вещество, с помощью которого это определение проводят, называют рабочим веществом (Р.В.).


1.7.2. Способы выражения состава раствора, используемые в аналитической химии
1. Наиболее удобным способом выражения состава раствора является концентрация. Концентрация - это физическая величина (размерная или безразмерная), определяющая количественный состав раствора, смеси или расплава. При рассмотрении количественного состава раствора, чаще всего, имеют в виду отношение количества растворенного вещества к объему раствора.

Самой распространенной является молярная концентрация эквивалентов. Символ ее, записанный, например, для серной кислоты - Сэкв(H2SO4), единица измерения - моль/дм3.



(1)
В литературе встречаются и другие обозначения этой концентрации. Например, С(1/2H2SO4). Дробь, стоящая перед формулой серной кислоты, означает, какая часть молекулы (или иона) является эквивалентом. Ее называют фактором эквивалентности, обозначают fэкв. Для H2SO4 fэкв = 1/2. Фактор эквивалентности рассчитывают на основе стехиометрии реакции. Число, показывающее, сколько эквивалентов содержится в молекуле, называют числом эквивалентности и обозначают Z*. fэкв = 1/Z*, поэтому молярную концентрацию эквивалентов обозначают и таким образом: C(1/Z*H2SO4).

2. В условиях аналитических лабораторий, когда приходится длительное время выполнять серии единичных анализов с использованием одной расчетной формулы, часто пользуются поправочным коэффициентом, или поправкой К.

Чаще всего поправка относится к рабочему веществу. Коэффициент показывает, во сколько раз концентрация приготовленного раствора рабочего вещества отличается от концентрации, выраженной округленными числами (0,1; 0,2; 0,5; 0,01; 0,02; 0,05), одно из которых может быть в расчетной формуле:

. (2)
К записывают в виде чисел, имеющих четыре знака после запятой. Из записи: К=1,2100 к Сэкв(HCl)=0,0200 моль/дм3 следует, что Сэкв(HCl) = 0,0200 моль/дм3 - это стандартная молярная концентрация эквивалентов HCl, тогда истинная рассчитывается по формуле:
.


  1. следующая страница >>



Все выше, выше и вы... ах! Лоренс Питер
ещё >>