Учебное пособие Часть I санкт-петербург 2006 - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Учебное пособие издательство Санкт-Петербургского государственного... 13 3709.73kb.
Учебное пособие Санкт-Петербург 2012 18 3455.98kb.
Доклад на Конгрессе-2006 «Фундаментальные проблемы естествознания... 3 812.05kb.
Учебное пособие Санкт-Петербург 2003 12 3145kb.
Учебное пособие для магистров Санкт-Петербург 2010 4 706.39kb.
Учебное пособие Санкт-Петербург 2007 6 1184.54kb.
Учебное пособие Санкт-Петербург 2012 20 2525.46kb.
Учебное пособие по статистике часть I новосибирск 2001 ббк а. 9 1553.1kb.
Учебное пособие. М.: Альфа-М, 2006 Серия 1 45.23kb.
Сборник Издание 2-е, дополненное Санкт-Петербург 2006 11 3165.4kb.
Учебное пособие Под редакцией д ф. н., проф. И. Ф. Кефели Санкт-Петербург... 36 6953.75kb.
Перекачиваемая среда 1 30.49kb.
Направления изучения представлений о справедливости 1 202.17kb.

Учебное пособие Часть I санкт-петербург 2006 - страница №1/10



ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПУТЕЙ СООБЩЕНИЯ


Кафедра “Инженерная геодезия”

_____________________________________________________________



ИНЖЕНЕРНАЯ ГЕОДЕЗИЯ
Учебное пособие

Часть I


САНКТ-ПЕТЕРБУРГ

2006

УДК 528.48



Инженерная геодезия. Учебное пособие, часть I / Е.С. Богомолова, М.Я. Брынь, В.В. Грузинов, В.А. Коугия, В.И. Полетаев; под ред. В.А. Коугия. – СПб.: Петербургский гос. ун-т путей сообщения, 2006. - с.

Изложены предмет и задачи инженерной геодезии, сведения о системах координат и высот, методах построения плановых и высотных геодезических сетей, элементы теории погрешностей измерений, приборы и методы, применяемые для измерения углов и расстояний, приборы и методы нивелирования.

Разделы 1, 6 пособия написаны М.Я. Брынем, 2, 9 – Е.С. Богомоловой, 3 – В.В. Грузиновым, 4, 8 – В.А. Коугия, 5, 7 – В. И. Полетаевым.

Предназначено для студентов, обучающихся по железнодорожным и строительным специальностям.


1. ПРЕДМЕТ ИНЖЕНЕРНОЙ ГЕОДЕЗИИ
Геодезия – наука, изучающая фигуру и внешнее гравитационное поле Земли и разрабатывающая методы создания систем координат, определения положения точек на Земле и околоземном пространстве, изображения земной поверхности на картах.

Научными задачами геодезии являются:

- установление систем координат;

- определение формы и размеров Земли и ее внешнего гравитационного поля и их изменений во времени;

- проведение геодинамических исследований (определение горизонтальных и вертикальных деформаций земной коры, движений земных полюсов, перемещений береговых линий морей и океанов и др.).

Научно-технические задачи геодезии в обобщенном виде заключаются в следующем:

- определение положения точек в выбранной системе координат;

- составление карт и планов местности разного назначения;

- обеспечение топографо-геодезическими данными нужд обороны страны;

- выполнение геодезических измерений для целей проектирования и строительства, землепользования, кадастра, исследования природных ресурсов и др.

Геодезия в процессе своего развития разделилась на ряд научных дисциплин: высшую геодезию, топографию, фотограмметрию, картографию, космическую геодезию, морскую геодезию, инженерную геодезию.

Особое место в этом ряду занимает инженерная геодезия, которая разрабатывает методы геодезического обеспечения изысканий, проектирования, строительства и эксплуатации инженерных сооружений: железных и автомобильных дорог, мостов, тоннелей, трубопроводов, промышленных и гражданских зданий, систем водоснабжения и водоотведения и др.

Основными задачами инженерной геодезии являются:

топографо-геодезические изыскания, в ходе которых выполняется создание на объекте работ геодезической сети, топографическая съемка, геодезическая привязка точек геологической и геофизической разведки;

инженерно-геодезическое проектирование, включающее разработку генеральных планов сооружений и их цифровых моделей; геодезическую подготовку проекта для вынесения его в натуру, расчеты по горизонтальной и вертикальной планировке, определению площадей, объемов земляных работ и др.;

геодезические разбивочные работы, включающие создание на объекте геодезической разбивочной сети и последующий вынос в натуру главных осей сооружения и его детальную разбивку;

геодезическая выверка конструкций и технологического оборудования при установке их в проектное положение;

наблюдения за деформациями сооружений, определяющие осадки оснований и фундаментов, плановые смещения и крены сооружений.

Геодезическое обеспечение строительства и эксплуатации современных инженерных сооружений связано с необходимостью выполнения точных измерений, служащих определению координат и высот геодезических пунктов, составлению топографических карт и планов, продольных профилей трасс; наблюдению за деформациями сооружений. Для обеспечения необходимой точности измерения выполняются высокоточными геодезическими приборами: теодолитами – угловые измерения; светодальномерами – линейные измерения; электронными тахеометрами – угловые и линейные измерения с решением различных инженерно-геодезических задач; нивелирами – определение превышений. При определении положения объектов используется аппаратура, работающая по сигналам спутниковых навигационных систем, при выполнении топографической съемки местности находят применение лазерные сканеры. Обработка результатов геодезических измерений выполняется на современных компьютерах с использованием развитого программного обеспечения. К числу таких программных продуктов относятся геоинформационные системы, служащие сбору, обработке, систематизации, отображению и анализу картографической информации.

Состав геодезических работ, их точность, используемые методы и приборы различаются в зависимости от особенностей объекта.

Так, при выполнении изысканий железной дороги создают геодезическую сеть, опираясь на которую составляют топографические карты и планы. На картах и планах выполняют предварительное трассирование дороги, окончательное положение которой выбирают в поле. Затем делают съемку трассы и получают необходимые для проектирования дороги профиль трассы и ситуационный план полосы местности.

Для обеспечения безопасного движения поездов вдоль железной дороги создают высокоточную геодезическую сеть (так называемую, реперную систему), опираясь на которую выполняют работы по реконструкции и ремонту пути, по оперативному контролю его геометрических параметров, по наблюдениям за деформациями пути, земляного полотна и искусственных сооружений.

В процессе строительства и по мере завершения отдельных его этапов выполняются исполнительные съемки, целью которых является установление точности вынесения проекта сооружения в натуру, выявление отклонений, допущенных в процессе строительства, а также определение фактических координат и высотных отметок построенных объектов, размеров его отдельных частей.

2. ФОРМА И РАЗМЕРЫ ЗЕМЛИ. СИСТЕМЫ КООРДИНАТ.

ВЫСОТЫ



2.1. Форма и размеры Земли

Изучение формы и размеров Земли включает решение двух задач. Это  установление некоторой сглаженной, обобщенной, теоретической фигуры Земли и определение отклонений от нее фактической физической поверхности.

Учитывая, что поверхность океанов и морей составляет 71 поверхности Земли, а поверхность суши  только 29, за теоретическую фигуру Земли принято тело, ограниченное поверхностью океанов в их спокойном состоянии, продолженной и под материками, и называемое геоидом.

Поверхность, в каждой своей точке перпендикулярная к отвесной линии (направлению силы тяжести), называется уровенной поверхностью. Из множества уpовенных поверхностей одна совпадает с поверхностью геоида.

Из-за неравномерности распределения масс в земной коре геоид имеет неправильную геометрическую форму, и его поверхность нельзя выразить математически, что необходимо для решения геодезических задач. При решении геодезических задач геоид заменяют близкими к нему геометрически правильными поверхностями.

Так, для приближенных вычислений Землю принимают за  шар с радиусом 6371 км.

Ближе к форме геоида подходит эллипсоид – фигура, получаемая вращением эллипса (рис. 2.1) вокруг его малой оси. Размеры земного эллипсоида характеризуют следующими основными параметрами: a  большая полуось, b  малая полуось,   полярное сжатие и e – первый эксцентриситет меридианного эллипса, где и .



Рис. 2.1. Меридианный эллипс: Рс – северный полюс; Рю – южный полюс



Различают общеземной эллипсоид и референц-эллипсоид.

Центр общеземного эллипсоида помещают в центре масс Земли, ось вращения совмещают со средней осью вращения Земли, а размеры принимают такие, чтобы обеспечить наибольшую близость поверхности эллипсоида к поверхности геоида. Общеземной эллипсоид используют при решении глобальных геодезических задач, и в частности, при обработке спутниковых измерений. В настоящее время широко пользуются двумя общеземными эллипсоидами: ПЗ-90 (Параметры Земли 1990 г, Россия) и WGS-84 (Мировая геодезическая система 1984 г, США).

Референц-эллипсоид – эллипсоид, принятый для геодезических работ в конкретной стране. С референц-эллипсоидом связана принятая в стране система координат. Параметры референц-эллипсоида подбираются под условием наилучшей аппроксимации данной части поверхности Земли. При этом совмещения центров эллипсоида и Земли не добиваются.

В России с 1946 г. в качестве референц-эллипсоида  используется эллипсоид Красовского с параметрами: а = 6 378 245 м,  = 1/ 298,3.


2.2. Системы координат, применяемые в геодезии

Для определения положения точек в геодезии применяют пространственные прямоугольные, геодезические и плоские прямоугольные координаты.

Пространственные прямоугольные координаты. Начало системы координат расположено в центре O земного эллипсоида (рис. 2.2).



Рис. 2.2. Земной эллипсоид и координаты: Х, Y , Z – пространственные прямоугольные; B, L, H  геодезические; G  Гринвич





Ось Z направлена по оси вращения эллипсоида к северу. Ось Х лежит в пересечении плоскости экватора с начальным  гринвичским меридианом. Ось Y направлена перпендикулярно осям Z и X на восток.

Геодезические координаты. Геодезическими координатами точки являются ее широта, долгота и высота (рис. 2.2).

Геодезической широтой точки М называется угол В, образованный нормалью к поверхности эллипсоида, проходящей через данную точку, и плоскостью экватора.

Широта отсчитывается от экватора к северу и югу от 0 до 90 и называется северной или южной. Северную широту считают положительной, а южную  отрицательной.

Плоскости сечения эллипсоида, проходящие через ось OZ, называются геодезическими меридианами.

Геодезической долготой точки М называется двугранный угол L, образованный плоскостями начального (гринвичского) геодезического меридиана и геодезического меридиана данной точки.

Долготы отсчитывают от начального меридиана в пределах от 0 до 360 на восток, или от 0 до 180 на восток (положительные) и от 0 до 180 на запад (отрицательные).



Геодезической высотой точки М является ее высота Н над поверхностью земного эллипсоида.

Геодезические координаты с пространственными прямоугольными координатами связаны формулами



X = (N + H) cosB cosL,

Y = (N+H) cosB sinL,

Z = [(1 e2) N+H] sinB,

где e  первый эксцентриситет меридианного эллипса и N радиус кривизны первого вертикала. При этом N=a/(1  e2 sin2B)1/2.

Геодезические и пространственные прямоугольные координаты точек определяют с помощью спутниковых измерений, а также путем их привязки геодезическими измерениями к точкам с известными координатами.

Отметим, что наряду с геодезическими существуют еще астрономические широта и долгота. Астрономическая широта  это  угол, составленный отвесной линией в данной точке с плоскостью экватора. Астрономическая долгота  – угол между плоскостями Гринвичского меридиана и проходящего через отвесную линию в данной точке астрономического меридиана. Астрономические координаты определяют на местности из астрономических наблюдений.

Астрономические координаты отличаются от геодезических потому, что направления отвесных линий не совпадают с направлениями нормалей к поверхности эллипсоида. Угол между направлением нормали к поверхности эллипсоида и отвесной линией в данной точке земной поверхности называется уклонением отвесной линии.

Обобщением геодезических и астрономических координат является термин – географические координаты.



Плоские прямоугольные координаты. Для решения задач инженерной геодезии от пространственных и геодезических координат переходят к более простым – плоским координатам, позволяющим изображать местность на плоскости и определять положение точек двумя координатами х и у.
Поскольку выпуклую поверхность Земли изобразить на плоскости без искажений нельзя, введение плоских координат возможно только на ограниченных участках, где искажения так малы, что ими можно пренебречь. В России принята система прямоугольных координат, основой которой является равноугольная поперечно–цилиндрическая проекция Гаусса. Поверхность эллипсоида изображается на плоскости по частям, называемым зонами. Зоны представляют собой сферические двуугольники, ограниченные меридианами, и простирающиеся от северного полюса до южного (рис. 2.3). Размер зоны по долготе равен 6. Центральный меридиан каждой зоны называется осевым. Нумерация зон идет от Гринвича к востоку.



Рис. 2.3. Деление поверхности Земли на координатные зоны: G – Гринвич



следующая страница >>



Интерпретация — это свободная прогулка по твердой земле. Артур Шнабель
ещё >>