Тема Целочисленное программирование - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Целочисленное и бинарное программирование 1 108.08kb.
Тематика курсовых работ по математическим методам кибернетики 1 16.4kb.
Целочисленное программирование. Метод ветвей и границ 1 92.03kb.
Тема технология программирование 1 70.3kb.
Целочисленное программирование 6 475.77kb.
7. целочисленное программирование 10 870.02kb.
Целочисленное программирование 1 46.81kb.
Тема: «Математическое программирование» 8 504.92kb.
Методические указания к лабораторным работам и домашним заданиям... 6 327.14kb.
Программа вступительного экзамена по специальности 05. 13. 18 Математическое... 1 112.81kb.
Варианты заданий к контрольной работе 1 22.41kb.
Решение задачи. Рассмотрим пример. Пусть имеется ряд предметов П1... 1 35.44kb.
Направления изучения представлений о справедливости 1 202.17kb.

Тема Целочисленное программирование - страница №2/3

Метод ветвей и границ


Метод ветвей и границ − один из комбинаторных методов. В отличие от метода Гомори применим как к полностью, так и частично целочисленнным задачам.

Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам полезными для нахождения оптимального решения.



Идея метода ветвей и границ состоит в следующем: пусть решена ослабленная задача без ограничения целочисленности, и - целочисленная переменная, значение которой в оптимальном плане является дробным. Тогда интервал

не содержит допустимых решений с целочисленной координатой . Следовательно, допустимое целое значение должно удовлетворять

или , или

Введение этих условий в задачу порождает две несвязанные между собой задачи с одной и той же целевой функцией, но непересекающимися областями допустимых значений переменных. В этом случае говорят, что задача разветвляется.

Очевидно, что возможен один из следующих четырех случаев.


  1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.

  2. Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи на новых ограничениях по этой переменной, полученных разделением ее ближайших к решению целочисленных значений.

  3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой. Для определенности здесь и далее полагаем, что решается задача о максимуме целевой функции. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и вместе со значением целевой функции на нем дает искомое решение.

Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, произвести ветвление по дробной переменной и построить две новые задачи.

  1. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и производим ветвление на две новые задачи, разбивая область изменения этой переменной на две, ограниченные целыми числами справа и слева соответственно.

Таким образом, процесс построения все новых и новых задач может быть представлен на рисунке в виде ветвистого дерева, с вершиной, обозначенной «задача 1», и отходящими от этой вершины ветвями. Такая последовательность действий при нахождении оптимального решения задачи целочисленного программирования нашла свое отражение в названии этого метода.

Рис. 1.


Исходная вершина отвечает оптимальному плану исходной задачи 1, а каждая соединенная с ней ветвью вершина отвечает оптимальным планам новых задач, построенных для новых ограничений по одной из переменных, имеющих в оптимальном плане задачи 1 значение в виде дробного числа.

Каждая из вершин имеет свои ответвления, при этом на каждом шаге выбирается та вершина, для которой значение целевой функции будет наибольшим.

Если на некотором шаге будет получен план, имеющий целочисленные значения, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Пример. Найти методом ветвей и границ решение задачи целочисленного программирования



Решение. Находим оптимальный план сформулированной задачи симплексным методом без учета целочисленности переменных, а именно решаем задачу 1.

Задача 1


Оптимальный план задачи 1 линейного программирования



при .

Для исходной задачи, с учетом целочисленности переменных, полученное решение не является оптимальным.

Для поиска целочисленного оптимального решения разделим интервал изменения переменной x1 на две области, а именно x1 [0;9] и x1 = 10 , и разобьем заданную задачу на две новые задачи.


Задача 2



Задача 3



Нижняя граница линейной функции не изменилась: Z0 = 0. Решаем одну из задач, например задачу 3, симплексным методом. Получаем, что условия задачи противоречивы.

Решаем задачу 2 симплексным методом. Получаем оптимальный целочисленный план поставленной задачи 2, который является также оптимальным планом задачи 1:



при .

Таким образом, в результате одного ветвления задачи было найдено ее оптимальное решение.




<< предыдущая страница   следующая страница >>



Не у каждого ноги достают до самой земли. Янина Ипохорская
ещё >>