страница 1 |
|||||||||||||||||||||||||||||||||||||||||||
Похожие работы
|
Программа курса «Математические методы в психологии» - страница №1/1
![]() Введение Использование математических методов в психологии и границы их применимости. Проблема измерения в психологии. Особенности измерения психологических величин. Понятие о вариабельности и многофакторности измеряемых признаков. Шкалы измерений. Типы измерительных шкал: номинальная шкала (шкала наименований) и ее свойства, дихотомическая шкала; ординарные (ранговые, порядковые) шкалы и их свойства; интервальные шкалы; шкалы отношений. Основные статистические понятия: понятие о генеральной и выборочной совокупности, проблема репрезентативности выборки; понятие переменной величины; уровни значимости (пороги достоверности); понятие о статистической значимости (статистической достоверности) полученных результатов. Подготовка данных к математической обработке: протоколирование данных; составление сводных таблиц (табулирование данных); построение таблиц сгруппированных частот; графическое представление полученных распределений; определение квантилей: понятие о квартилях, квинтилях, децилях и процентилях. Меры центральной тенденции Мода, медиана, среднее арифметическое и среднее геометрическое значение, формулы их определения. Свойства среднего арифметического. Меры изменчивости (вариабельности, разнообразия) признака Непараметрические меры изменчивости: предел (лимит) изменчивости; размах вариаций; размах от 1-го до 9-го дециля (от 10-го до 90-го процентиля) (мера D); междуквартильный (Q) и полумеждуквартильный (Q1/2) размах. Параметрические меры изменчивости: среднее отклонение (мера Фехнера); дисперсия и формулы ее определения, свойства дисперсии; стандартное (среднеквадратичное) отклонение и его вычисление; коэффициент вариаций; среднеквадратичная ошибка. Распределения переменных величин Понятие о нормальном распределении (распределение Гаусса, Муавра – Лапласа и пр.). История исследований нормального распределения. Свойства теоретического нормального распределения. Методы сравнения экспериментального (эмпирического) распределения с теоретическим (нормальным). Асимметрия распределений (As). Понятие о положительной и отрицательной асимметрии. Формулы вычисления асимметрии. Определение соответствия эмпирического распределения нормальному по коэффициенту асимметрии. Причины асимметрии распределений психологических показателей. Эксцесс распределений (Ex). Понятие о положительном и отрицательном эксцессе. Формула вычисления эксцесса. Определение соответствия эмпирического распределения нормальному по показателю эксцесса. Причины эксцессивных распределений в психологических исследованиях. Критерий χ2 Пирсона. Определение соответствия экспериментального распределения теоретическому (нормальному) по критерию χ2 Пирсона. Алгоритм вычислений критерия Пирсона для 8-классового распределения, сравнение экспериментального значения χ2 с теоретическим (табличным) значением. Особенности работы с 16-классовым распределением. Критерий λ Колмогорова – Смирнова. Алгоритм вычислений критерия Колмогорова; нормы λ для 1-го уровня значимости. Таблица Р(λ) и ее использование. Комбинированный метод оценки соответствия эмпирического распределения теоретическому (нормальному): использование меры z Пирсона и накопления частот по Колмогорову. Равномерное распределение. Использование критерия χ2 Пирсона и критерия λ Колмогорова – Смирнова для оценки соответствия эмпирического распределения теоретическому (равномерному). Биномиальное распределение, область его применения; формулы биномиального распределения.Распределение Пуассона как частный случай биномиального распределения: область применения и особенности работы с распределением Пуассона. Меры различийОсновные понятия о достоверности различий между выборками испытумых, постановка задачи. Непараметрические меры различий. Критерий Розенбаума, границы его применимости и принцип расчета коэффициента. U-критерий Манна – Уитни: алгоритм вычислений коэффициента. Параметрические меры различий. Критерий Стьюдента и критерий Фишера. Условия использования параметрических критериев. Угловое преобразование Фишера и область его применения. Возможности использования критерия χ2 Пирсона и критерия λ Колмогорова – Смирнова для определения достоверности различий между двумя эмпирическими распределениями. Меры связи Общие понятия о корреляциях. Графическое представление корреляционных связей. «Облако рассеивания» показателей и его интерпретация. Коэффициент корреляции Фехнера, принцип расчета. Ограниченность использования коэффициента. Коэффициент корреляции Пирсона. Теоретические основания вывода коэффициента Пирсона. «Универсальность» коэффициента. Формулы для расчета коэффициента Пирсона и методы определения его статистической значимости. Коэффициент ранговой корреляции Спирмена. Основные модификации формулы Спирмена. Формула коэффициента Спирмена для связанных рангов. Коэффициент ранговой корреляции Кендалла. Принцип расчета совпадений и инверсий. Альтернативные формулы для вычисления коэффициента Кендалла. Дихотомический коэффициент корреляции. Границы применимости и методы определения статистической значимости коэффициента. Точечно-бисериальный коэффициент корреляции.Рангово-бисериальный коэффициент корреляции. Выбор меры связи в зависимости от типа измерительных шкал.Понятие о матрицах корреляций. Принципы построения корреляционных матриц. «Корреляционные плеяды» как наглядный способ представления корреляционных связей между переменными. Меры зависимости Соотношение понятий связь и зависимость. Понятие об аргументе и функции. Монотонные и немонотонные формы зависимости. Метод подбора координат для монотонных форм зависимости Анализ линейной зависимости. Метод наименьших квадратов. Уравнение множественной зависимости и его использование в психологии.
Непараметрические меры влияния: s-критерий знаков и Т-критерий Вилкоксона; методы расчета коэффициентов и определение их статистической значимости. Однофакторный дисперсионный анализ. Основные принципы анализа. Понятие о факторе, градациях фактора, внутригрупповой (случайной) и межгрупповой (факториальной) дисперсиях, силе и достоверности влияния исследуемого фактора. Алгоритм расчета основных показателей в однофакторном дисперсионном анализе. Двухфакторный дисперсионный анализ. Понятие о двухфакторных дисперсионных комплексах (ДДК). Принципы организации ДДК. Количественные соотношения выборок: равномерные, пропорциональные и неравномерные ДДК. Использование двухфакторного дисперсионного анализа в психологических исследованиях. Элементы многомерной статистики Кластерный анализ и область его применения. Основные принципы кластеризации. Представление данных кластерного анализа (дендрограммы, разветвленные графы). Использование кластерного анализа в психологии. Факторный анализ, основные принципы. Понятие о факторах, факторных весах и факторных нагрузках. Способы представления данных: матрицы факторных нагрузок, графическое представление. Современное состояние и перспективы использования факторного анализа в психологических исследованиях. |
ещё >> |