Циклоалканы (циклопарафины) - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Название работы Кол-во страниц Размер
Тест А17 Основные способы получения углеводородов (в лаборатории) 1 28.62kb.
Изомерия – явление, при котором вещества имеют одну молекулярную... 1 19.18kb.
«циклопарафины: строение, свойства, применение» 1 49.7kb.
Алициклические углеводороды или циклоалканы 1 142.6kb.
Тест А14 Характерные химические свойства углеводородов: алканов,... 1 57.42kb.
«циклопарафины: строение, свойства, применение» 1 49.7kb.
Направления изучения представлений о справедливости 1 202.17kb.

Циклоалканы (циклопарафины) - страница №1/1

УГЛЕВОДОРОДЫ


ЦИКЛОАЛКАНЫ
(ЦИКЛОПАРАФИНЫ)

В отличие от предельных углеводородов, характеризующихся наличием открытых углеродных цепей, существуют углеводороды с замкнутыми цепями (циклами). По своим свойствам они напоминают обычные предельные углеводороды алканы (парафины), отсюда и произошло их название – циклоалканы (циклопарафины). Общая формула гомологического ряда циклоалканов CnH2n, то есть циклоалканы изомерны этиленовым углеводородам. Представителями этого ряда соединений являются циклопропан, циклобутан, циклопентан, циклогексан.












Циклопропан

Циклобутан

Циклопентан

Циклогексан

Очень часто в органической химии структурные формулы перечисленных циклоалканов изображают без

символов C и H простыми геометрическими фигурами 


Изомерия

Для циклопарафинов, начиная с C4H8, характерны некоторые виды структурной изомерии, связанные:





  1. с числом углеродных атомов в кольце – например, (этилциклопропан), (метилциклобутан);




  1. с числом углеродных атомов в заместителях – (1-метил-2-пропилциклопентан), (1,2-диэтилциклопентан)




  1. с положением заместителя в кольце – (1,1-диметилциклогексан), (1,2-диметилциклогексан)

Для циклоалканов характерна также межклассовая изомерия с алкенами.

При наличии двух заместителей в кольце у разных углеродных атомов возможна геометрическая цис-транс-изомерия, начиная с C5H10, и оптическая изомерия. Оптическая изомерия проявляется в том случае, если молекула не имеет плоскости симметрии.
Для изучения названных видов изомерии необходимо просмотреть анимационный фильм "Цис-транс-изомерия в циклических соединениях" (данный материал доступен только на CD-ROM). Текст, сопровождающий этот фильм, в полном объеме перенесен в данный подраздел и ниже следует.

Цис-транс-изомерия в циклических соединениях

“При наличии двух заместителей в циклических соединениях также возможна цис-транс-изомерия. Метильные группы в приведенных примерах могут располагаться по одну сторону плоскости кольца (такой изомер называется цис-изомером) и по разные стороны (такой изомер называется транс-изомером).


Естественно, что при наложении друг на друга моделей цис- и транс- изомеров они не совмещаются. Взаимные изомеризации требуют разрыва цикла с последующим его замыканием или разрыва связи заместителя с углеродным атомом цикла и образованием новой связи с другой стороны цикла.

Следует отметить, что в циклических соединениях возможно возникновение не только цис-транс-, но и зеркальной изомерии. При наложении модели молекулы цис-изомера с одинаковыми заместителями и ее зеркального отражения они совмещаются, в то время как таковое невозможно для цис-изомера с различными заместителями. Для транс-изомеров совмещение модели молекулы и ее зеркального отражения невозможно как при одинаковых, так и различающихся заместителях.



Кроме того, в ряду циклоалканов существенное значение имеет поворотная изомерия. Для изучения этого вида изомерии в применении к циклическим соединениям необходимо просмотреть анимационные фильмы "Циклобутан, циклопентан и их конформации" и "Циклогексан и его конформации" (данный материал доступен только на CD-ROM). Тексты, сопровождающие эти фильмы, в полном объеме перенесены в данный подраздел и ниже следуют.

Циклобутан, циклопентан и их конформации

“Циклические соединения – это такие органические соединения,в которых углеродные атомы составляют замкнутые цепи, т.е. циклы. Простейшими представителями таких соединений являются циклопарафины или циклоалканы.


Прочность связей в циклических соединениях зависит от числа атомов, участвующих в образовании цикла. Она определяется степенью его напряженности, обусловленной изменением валентных углов атомов цикла и отклонением этих атомов от нормального направления (см. "теорию напряжения" Байера, разработанную им в 1885 году).
Для циклопропана межъядерные углы составляют 60º, как в равностороннем треугольнике, для циклобутана – 90º, как в квадрате, а в циклопентане – 108º, как в правильном пятиугольнике. Нормальный валентный угол для атома углерода – 109,5º. Поэтому при расположении в названных соединениях всех атомов углерода в одной плоскости уменьшение валентных углов составляет в циклопропане – 49,5º, в циклобутане – 19,5º, в циклопентане – 1,5º.
Чем больше отклонение валентного угла от нормального, тем более напряжены и, следовательно, непрочны циклы. Однако в отличие от циклопропана циклобутан и циклопентан имеют неплоские циклы. Один из атомов углерода непрерывно выходит из плоскости. Циклобутан существует в виде неплоских "сложенных" конформаций. Циклопентан характеризуется конформацией "конверт". Таким образом, обсуждаемые циклы находятся в колебательном движении, приводящем к уменьшению "заслоненности" атомов водорода у соседних углеродных атомов и снижению напряжения."

Циклогексан и его конформации

"Для циклогексана, как правильного шестиугольника, межъядерные углы составляют 120º. Если бы молекула циклогексана имела плоское строение, то отклонение от нормального валентного угла атома углерода составляло:109,5º–120º = 10,5º.


Однако циклогексан и большие циклы имеют неплоское строение. В рассматриваемой молекуле циклогексана сохраняются обычные валентные углы при условии его существования в двух конформациях "кресла" и "ванны". Конформация "кресла" менее напряжена, поэтому циклогексан существует преимущественно в виде конформеров I и III, причем цикл претерпевает непрерывную инверсию (inversio – с латинского переворачивание, перестановка) с промежуточным образованием конформера II:

ось симметрии                         II                                     III      


I                                                                         

Двенадцать связей C–H, которые имеются у циклогексана в конформации "кресла", делятся на два типа. Шесть связей направлены радиально от кольца к периферии молекулы и называются экваториальными связями (e- связи), остальные шесть связей направлены параллельно друг другу и оси симметрии и называются аксиальными (a- связи). Три аксиальные связи направлены в одну сторону от плоскости цикла, а три – в другую (имеется чередование: вверх-вниз)."




Получение

Одними из наиболее часто применяющихся способов получения циклоалканов являются следующие:





  1. циклизация дигалогенопроизводных углеводородов:




  1. при действии цинка в этиловом спирте на соответствующее дигалогенопроизводное цепь углеродных атомов замыкается, приводя к циклоалкану (Г.Густавсон).




(1,3-дибромпропан)

+Zn 



 +ZnBr2




  1. при действии амальгамы лития на 1,4- дибромбутан образуется циклобутан.




CH2–CH2–Br
 I
CH2–CH2–Br(1,4-дибромбутан)

+ 2Li/Hg  

H2C–CH2
     I     I
H2C–CH2(циклобутан)

+ 2 LiBr + 2Hg




  1. гидрогенизация ароматических соединений.




(бензол)

 + 3H2  ––100ºC,Ni  

(циклогексан)



Физические свойства

Циклоалканы имеют более высокие температуры плавления, кипения и большую плотность, чем соответствующие алканы. При одинаковом составе температура кипения циклопарафина тем выше, чем больше размер цикла. Циклоалканы в воде практически не растворимы, однако растворимы в органических растворителях.


Физические свойства некоторых циклоалканов представлены в таблице.

Таблица. Физические свойства некоторых циклоалканов





Соединение

tпл.,
С

tкип.,
С

d 420

Циклопропан

-126,9

-33

0,6881

Метилциклопропан

-177,2

0,7

0,69122

Циклобутан

- 80

13

0,7038

Метилциклобутан

-149,3

36,8

0,6931

Циклопентан

- 94,4

49,3

0,7460

Метилциклопентан

-142,2

71,9

0,7488

Циклогексан

6,5

80,7

0,7781

1 При температуре кипения.

2 При -20,0С.



Химические свойства

Химические свойства циклопарафинов зависят от числа атомов углерода, составляющих цикл. Низшие циклоалканы (циклопропан и циклобутан) ведут себя как ненасыщенные углеводороды, они способны вступать в реакции присоединения. Циклоалканы с большим количеством углеродных атомов в цикле ведут себя как алканы, для них характерны реакции замещения. Причины такого различия в химическом поведении упомянутых циклоалканов подробно рассмотрены и обсуждены в анимационных фильмах "Циклобутан, циклопентан и их конформации", "Циклогексан и его конформации" (см. выше).





  1. Гидрирование. При каталитическом гидрировании трех-,четырех- и пятичленные циклы разрываются с образованием алканов.



(циклопропан) + H2  ––120ºC,Ni  CH3–CH2–CH3(пропан)

(циклопентан) + H2  ––300ºC,Pd  CH3–CH2–CH2–CH2–CH3(пентан)
Как видно, пятичленный цикл разрывается только при высоких температурах.


  1. Галогенирование. Трехчленный цикл при галогенировании разрывается, присоединяя атомы галогена


 + Br2  BrCH2–CH2–CH2Br(1,3- дибромпропан)
Циклопарафины с пяти- и шестичленными циклами вступают при галогенировании в обычные для парафинов реакции замещения.

 + Cl2  (хлорциклопентан) + HCl


  1. Гидрогалогенирование. Циклопропан и его гомологи взаимодействуют с галогеноводородами с разрывом цикла.



(метилциклопропан)

+ HBr  CH3–CH2

CHCH3(2-бромбутан)
 I
Br

Реакция осуществляется в соответствии с правилом Марковникова (см. "Непредельные углеводороды").


Другие циклопарафины с галогеноводородами не реагируют.



  1. Дегидрирование. Соединения с шестичленными циклами при нагревании с катализаторами дегидрируются с образованием ароматических углеводородов.






  ––300ºC,Pd  

(бензол)

 + 3H2




  1. Окисление. Несмотря на устойчивость циклопарафинов к окислителям в обычных условиях, при нагревании сильные окислители превращают их в двухосновные карбоновые кислоты с тем же числом углеродных атомов.





O
II 
  ––  C

HO

–CH2–CH2–CH2–CH2

O
 II
C   (адипиновая кислота)
I
OH



Применение



Наибольшее практическое значение имеют циклогексан, этилциклогексан. Циклогексан используется для получения циклогексанола, циклогексанона, адипиновой кислоты, капролактама, а также в качестве растворителя. Циклопропан используется в медицинской практике в качестве ингаляционного анестезирующего средства.




У глупого тотчас же выкажется гнев его, а благоразумный скрывает оскорбление. Царь Соломон — Притчи, 12, 1
ещё >>