6. Экзаменационные вопросы вопросы к государственным итоговым экзаменам (комментарии) - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
страница 1страница 2
Похожие работы
Название работы Кол-во страниц Размер
Вопросы к государственным экзаменам для выпускников 2010 года Вопросы... 1 50.81kb.
Экзаменационные вопросы по истории и философии науки Курс «История... 1 134.69kb.
Экзаменационные вопросы по предмету «Основы экономики» 1 20.36kb.
Экзаменационные вопросы по истории отечества (История России в контексте... 1 39.69kb.
Экзаменационные вопросы: 1 курс, 1 семестр А. Стандартные вопросы. 1 41.45kb.
Экзаменационные вопросы и задачи вопросы Множества и отношения 1 65.39kb.
2011 г. Вопросы к вступительным экзаменам в аспирантуру 1 49.67kb.
Программа Pīsadaleituoju registraceja 1 70.06kb.
Экзаменационные вопросы Ситновой Л. И. к курсу «Общественное мнение... 1 15.41kb.
Экзаменационные вопросы по метеорологии 1 18.45kb.
Методические рекомендации по организации самостоятельной работы студентов... 1 185.31kb.
Методические указания к практическим занятиям Красноярск сфу 2011 1 75.26kb.
Направления изучения представлений о справедливости 1 202.17kb.

6. Экзаменационные вопросы вопросы к государственным итоговым экзаменам (комментарии) - страница №1/2



ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

РОССИЙСКОЙ ФЕДЕРАЦИИ


Государственное образовательное учреждение

высшего профессионального образования

«ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Факультет философии и культурологии


Рассмотрено и рекомендовано УТВЕРЖДАЮ

на заседании кафедры философии Декан факультета

и методологии науки д.ф.н., проф. Г.В. Драч

Протокол № 7 ___________________

от «16» февраля 2009 г. «___» _________ 2009 г.

Зав. кафедрой д.ф.н. Бакулов В.Д.

____________________________
УЧЕБНО – МЕТОДИЧЕСКИЙ КОМПЛЕКС

УЧЕБНОЙ ДИСЦИПЛИНЫ «ЛОГИКА»

(ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ)

ФЕДЕРАЛЬНОГО КОМПОНЕНТА ЦИКЛА ОПД(Ф.01)

ПО СПЕЦИАЛЬНОСТИ 030101 ФИЛОСОФИЯ

Составитель Стешенко Н.И.




Ростов-на-Дону

2009 год


СОДЕРЖАНИЕ

Стр.
1. Пояснительная записка…………………………………………………… 3

2. Тематический план курса ……………………………………………….. 4

3. Программа курса ……………………………………………………… 5-11

4. Планы семинарских занятий(с указаниями к самостоятельной
подготовке, формы контроля). 12-19

5. Литература ……………………………………………………………… 19

6. Экзаменационные вопросы …………………………………………...20-21

7. Вопросы к государственным итоговым экзаменам (комментарии)...21-22

9. Темы курсовых и дипломных работ ……………………………………. 22

10. Глоссарий ……………………………………………………………22-25



ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель – дать современные представления о традиционной, классической и неклассической логиках.

Задачи – овладеть теоретико-доказательными и теоретико-модельными методами изучаемых логик, установить взаимозависимость философии и логики.

Место в учебном процессе – содержание некоторых разделов курса логики позволяют лучше понять тексты античных и средневековых философов (силлогистика), тексты философов аналитического направления 20 в.(язык как знаковая система), более глубоко усвоить отдельные темы курсов истории и методологии науки (индуктивная логика)

ТЕМАТИЧЕСКИЙ ПЛАН КУРСА



п/п


Тема

Лекции

Семинары

Всего




Часть первая










11.

Предмет и значение логики

2



2

22.

Понятие

2

2

4

33.

Классическая логика высказываний. Теория моделей

2

2

4

44

Классическая логика высказываний. Теория доказательства

2

4

6




Часть вторая










55.

Классическая логика предикатов. Теория моделей

2

4

6

66.

Классическая логика предикатов. Теория доказательства

4

8

12

77.

Традиционное учение о суждении. Традиционная силлогистика

2

4

8




Часть третья










88.

Неклассическая логика: модальная логика высказываний. Аксиоматические нормальные системы. Теория моделей

2

-

8

99.

Неклассическая логика: трехзначная логика Лукасевича. Матричный способ получения n-значных логик Лукаснвича

2

6

2

110.

Индуктивная логика

2



2

11.

Логические основы теории аргументации

2



2

Итого:

24

30

54


Программа курса логики.

Часть первая

1. Предмет и значение логики.

Логическая практика как опыт использование концептуальных средств, сложившихся в культуре: понятий с конкретным содержанием, операций определения и классификации, доказательств отдельных утверждений и др.

Цель логического исследования - создание логической теории посредством уточнения, систематизации и расширения логического опыта человечества, выраженного в языке.

Чувственный и рациональный уровни познания. Особенности рационального уровня познания. Понятие, суждение, рассуждения - основные формы теоретического знания. Предмет логики как науки/теоретической логики/ - формы знания и способы, оперирования ими. Понятие логической: формы. Понятие логического закона. Законы тождества, запрета противоречия, исключенного третьего, принцип достаточного основания.

Логико-методологические формы научного познания: доказательство и опровержение, проблема, гипотеза, теория.

Возникновение логики как науки и основные этапы ее развития. Логические идеи в античной философии: апории Зенона, Платон о логических операциях с понятиями. Силлогистика Аристотеля - исторически первая дедуктивная логическая система. Семантические и логико-методологические аспекты в логическом учении Аристотеля. Индуктивная логика. Ф.Бэкона и Дж.Милля, Особенности современного этапа развития логики. Г.Фреге: метод формализации дедуктивных систем, преодоление психологизма в логике.

2 Язык как знаковая система

Понятие знака. Виды знаков: знаки-индексы, знаки-образцы/иконические-зиаки/ знаки-символы; знаки символы в естественном языке. Естественный язык как система средств коммуникации/общения/. Семиотические аспекты языка: семантический, синтаксический, прагматический. Семантический треугольник/"треугольник отнесения11 Дж. А. Ричардса: слово/ знак/ - вещь/объект, предмет/ - мысль; отношения: слово-вещь, мысль-слово, мысль-вещь.

Искусственный и естественный язык, их различие. Объектный язык и метаязык.

Семантические категории языковых выражений. Предложение (повествовательное) и термины (как части предложения). Значение и смысл предложения. Предложение и суждение(высказывание). Дескриптивные и логические термины. Дескриптивные термины: предложение, единичные и общие имена, предикаторы, предметные функторы. Логические термины: логические связки; логические операторы: а) кванторные слова ("всякий", "некоторый") б) определенная дескрипция ("тот..., который..."); в) неопределенная дескрипция ("некий из...").

Смысл и значение имени. Сложные/описательные/ имена, как имена, имеющие собственный смысл”. Простые/неописательнне/ имена, как имена, имеющие приданный смысл. Зависимость значения общего имени от грамматического места в предложении. Общее имя в позиции логического подлежащего - переменная (в сочетании с кванторными словами). Общее имя в позиции логического сказуемого ("есть + общее имя") - предикатор. Конструкция "а есть Р" как средство разделения имен на единичные и общие, где "а" единичное имя, а "Р" - общее имя.

Карнаповский метод отношения именования. Отношение именования. Принципы отношения именования: 1) принцип однозначности, 2) принцип предметности, 3) принцип взаимозаменимости. Неоднозначность в методе отношения именования при анализе общих имен в предложениях типа "единичное имя + есть + общее имя": общее имя как имя класса и общее имя как имя свойства. Антиномии отношения именования по принципу взаимозаменимости имен. Экстенсиональные и интенсиональные кон­тексты.



3 Понятие

Роль понятий в познании. Языковая форма выражения понятий. Основные приемы образования приятии: анализ, синтез, сравнение, обобщение, абстрагирование (обобщающе - различающее, отождествление, изолирующее абстрагирование/.

Логические характеристики понятий: содержание и объем. Содержание понятий. Простые и сложные признаки. Виды простых признаков: положительные и отрицательные, относительные и безотносительные, необходимые и случайные признаки, существенные признаки,

Объем понятий. Закон обратного отношения между объемом и содержанием


понятий. Виды понятий по объему: единичные, общие, пустые и неопределенные.

Виды понятий по характеру признаков, присущих предметам: относительные и безотносительные, положительные и отрицательные.

Виды понятий по характеру обобщаемых в понятиях объектов: конкретные и абстрактные, собирательные и несобирательные.

Логические отношения между понятиями по содержанию: сравнимые и несравнимые. Логические отношения между понятиями по объему: совместимые и несовместимые. Совместимые: отношения равнозначности, включения, пересечения. Несовместимые: отношения соподчинения, противоположности, противоречия. Моделирование отношений между объемом понятий на кругах Эйлера.

Операции с понятиями. Определение понятий. Структура определений: определяемое понятие, определяющая часть, отношение равенства между определяемым понятием и определяющей частью. Вида определений. Явные и неявные. Реальные и номинальные определения. Виды явных определений: через род и видовое отличие, генетическое, операциональное, определение через абстракцию. Вида неявных определений: контекстуальные, индуктивные, рекурсивные. Виды номинальных определений: синтаксические и семантические. Приемы, сходные с определением: остенсивные определения, описание. Правила определения и возможные ошибки в определениях.

Обобщение и ограничение понятий. Деление понятий. Логическая структура деления понятий: делимое понятие, основание деления, члены деления. Виды деления: по видоизменяющемуся признаку и дихотомическое. Правила деления и возможные ошибки при делении понятий.

Классификация. Естественная и искусственная классификация.

4. Классическая логика высказываний .

Повествовательное предложение и высказывание. Общая характеристика логики высказываний. Формализованный язык логики высказываний: алфавит, понятие правильно построенной формулы, понятие подформулы. Перевод сложных предложений естественного языка на язык логики высказываний.

Логические условия истинности высказываний. Таблицы истинности. Классификация формул по логическим условиям истинности: тождественно-истинние (общезначимые), тождественно-ложные (противоречивые) и выполнимые. Законы логики высказываний (т. е. законы выраженные в языке, логики высказываний).

Сокращенные таблицы истинности как метод проверки свойств формул "быть тожественно-истинной" либо "бить тождественно-ложной". Аналитические таблицы. Правила построения аналитических таблиц. Понятие разрешимости для классической логики высказываний.

Основные отношения между формулами по истинности и ложности: логической эквивалентности, противоречивости (контрадикторности), противоположности (контрарности), подпротивоположности(субконтрарности).Законы взаимовыразимости одних логических связок через другие. Понятие функциональной полноты систем связок.

Рассуждение как познавательная операция. Структура рассуждений (посылки, заключение). Два аспекта исследования рассуждений: содержательный (семантический, теоретико-модельный) и формальный (теоретико-доказательный, дедуктивный). Содержательный: понятие логического следования, понятие корректного и надежного рассуждения. Сведение отношения логического следования к понятию тождественно-истинной формулы (определенной логической структуры).

Формальный аспект. Формализация тождественно-истинных формул логики высказываний (законов логики). Формальная аксиоматическая система: формализованный язык логики высказываний, схемы аксиом, правила вывода, понятие формального доказательства и доказуемой формулы. Основные требования к адекватности формализации общезначимых формул: 1) теорема о корректности - если формула доказуема, то она общезначима; 2) теорема о полноте - если формула общезначима, то она доказуема. Следствие теоремы о корректности: теорема о непротиворечивости - 3) не имеется такой формулы, чтобы формула и ее отрицание были доказуемы в формальной системе. Понятие вывода и теорема о дедукции.

Ф
ЧАСТЬ ВТОРАЯ


ормализация отношения логического следования. Формальная система натурального вывода: формализованный язык, правила вывода, понятие вывода и выводимой формулы. Правила вывода: правила введения и удаления логических связок, прямые и косвенные правила, основные и производные правила.




5. Классическая логика предикатов.


Язык


Общая характеристика классической первопорядковой логики предикатов: алфавит, понятие терма, формулы, подформулы. Понятие свободного и связанного вхождения предметной переменной в формулу. Естественный язык и язык первопорядковой логики предикатов: семантические категории языковых выражений и символы языка логики предикатов.

Теория моделей (первопорядковая семантика).

Модель: непустая область интерпретации, функция интерпретации. Функция интерпретации(отображение): область определения - а) индивидные константы, б) предикатные символы, в) функциональные символы; область значения функции интерпретации - а/ фиксированные элементы области интерпретации, б) подмножества элементов, подмножества упорядоченных пар, троек и т.д. элементов области интерпретации, в) операции в области интерпретации. Функция приписывания значений предметным переменным в модели. Значение терма в модели при приписывании(значений предметным переменным). Определение истинностного значений формулы при заданном приписывании в модели (в соответствии с индуктивными шагами определения формулы). Понятие формулы, истинной в модели(выполнимая формула), понятие общезначимой формулы. Отношение логического следования, понятие корректного и надежного рассуждения в языке первопорядковой логики. Аналитические таблицы для формул первопорядковой логики как метод проверки свойства "быть общезначимой формулой". Неразрешимость свойства "быть необщезначимой формулой" (случай, когда формула не имеет завершенной аналитической таблицы). Законы взаимовыразимости кванторов, отрицание кванторов, пронесение и вынесение кванторов через конъюнкцию, дизъюнкцию и импликацию.



Теория доказательств.

Аксиоматическое построение классической логики предикатов. Схемы аксиом (схемы аксиом логики высказываний + схемы аксиом собственно логики предикатов), понятие формального доказательства и доказуемой формулы. Ограничение на использование предметных переменных в схемах аксиом и правилах вывода. Теорема дедукции.

Формальная система натурального вывода. Понятие вывода и выводимой формулы. Правила вывода. Правила введения и удаления логических связок, правила введения и удаления кванторов. Требование к подстановке терма вместо свободных переменных в правилах удаления квантора всеобщности и введение квантора существования. Ограничения на использование предметных переменных в правилах введения квантора всеобщности и правиле удаления квантора существования.

Смысл теорем о полноте и непротиворечивости исчисления предикатов первого порядка. Проблема разрешимости логики предикатов.



6. Традиционное учение о суждении. Простой категорический силлогизм.

Суждение как форма мысли. Суждение и повествовательное предложение. Простые и сложные суждения. Структура простых суждений: субъект, связка, предикат. Виды простых суждений: атрибутивные, реляционные, экзистенциальные. Перевод реляционных и экзистенциальных суждений на язык логики предикатов первого порядка. Сложные суждения: конъюнктивные, дизъюнктивные и др.

Категорическое суждение как вид атрибутивного суждений. Виды категорических суждений: общеутвердительные, общеотрицательные, частноутвердительные, частноотрицательные. Представление отношений между объемами терминов в категорических суждениях посредством круговых схем. Распределенность терминов в категорических суждениях.

Логический квадрат как мнемоническое средство для определения логических отношений между суждениями (с одинаковыми субъектами и предикатами) по истинности. Виды этих отношений: противоречия (контрадикторности) , противоположности (контрарности) , подпротивоположности (субконтрарности), подчинения. Непосредственные выводы по логическому квадрату. Непосредственные выводы не по логическому квадрату: обращения, превращения, противопоставления предикату, противопоставления субъекту. Анализ непосредственных выводов, на модельных схемах.



Традиционная силлогистика. Простой категорический силлогизм, Состав силлогизма: меньший, средний и болышый термины. Фигуры и модусы силлогизма. Правильные модусы: основные (сильные) и производные (слабые). Круговые схемы как средство отбора правильных модусов и проверки корректности выводов(силлогистических). Общие правила простого категорического силлогизма (правила терминов и посылок). Специальные правила фигур. Обоснование модусов 2-ой, 3-ой и 4-ой фигур через их сведение к модусам 1-ой фигуры.

Энтимема, ее виды: с пропущенной большей либо меньшей посылкой, с пропущенным заключением. Полисиллогизм, его виды. Сорит, его виды. Значение силлогистики для современной логики. Традиционная силлогистика как фрагмент логики предикатов.



ЧАСТЬ ТРЕТЬЯ

7. Неклассическая логика.

Логика классическая и неклассические логики. Основные виды неклассических логик: модальные, многозначные, интуиционистская, релевантная логики.



7.1Модальная логика высказываний

Основные виды модальных логик: алетическая, эпистемическая, деонтическая.

Алетическая модальная логика высказываний. Язык алетической логики высказываний: язык классической логики высказываний, дополненный операторами возможности и необходимости, понятие формулы алетической логики высказывали; Взаимовыразимость операторов возможности и необходимости.

Теория доказательств.

Четыре аксиоматические нормальные модальные системы: М, S4, S5, Br. Аксиомные схемы для этих систем (одинаков для всех четырех систем): модус поненс и правило Геделя. Понятие доказательства и доказуемой формулы. Понятие нормальной модальной системы. Соотношение между этими четырьмя модальными системами, графическое изображение этого соотношения. Самая сильная система - S5: любая теорема остальных систем доказуема в S5. Самая слабая система М: имеются теоремы остальных систем, недоказуемые в М системе.



Теория моделей для модальных систем: М, S4, S5, Br.

Модальные операторы не являются функционально-истинностными операторами. Модель: а/ -непустое множество возможных миров, из которых выделен актуальный(реальный) мир; б/ -бинарное отношение на мирах, называемое отношением достижимости; в/ -двуаргументная функция интерпретации: значение одного аргумента - формулы, второго -возможные миры; область значения этой функции -истинностные значения (истинно, ложно). Определение истинностного значения формулы (без модального оператора) относительно возможного мира при заданной интерпретации. Определение истинностного значения формулы (с модальным оператором) относительно возможного, но фиксированного мира при заданной интерпретации. Понятие формулы, истинной в модели (выполнимая формула), понятие логически истинной (общезначимой) формулы.

Класс, М-моделей, адекватных М-системе: модели, в которых отношение между мирами имеет свойство рефлексивности. Класс S4 -моделей, адекватных S4- системе: модели, в которых отношения между мирами обладают свойствами рефлексивности и транзитивности, Класс Br-моделей, адекватных Вr-системе: модели, в которых отношение между мирами имеет свойства симметричности и рефлексивности. Класс S5-моделей, адекватных S5-системе: модели, в которых отношение между мирами удовлетворяет свойству эквивалентности (т.е., рефлексивности, симметричности, транзитивности). Метод поиска контрмодели для проверки свойства "быть логически истинной" формулой М, S4, Вr, S5 -систем.

Философские проблемы в понимании исходных, т.е. неопределяемых, понятий теории моделей: "возможный мир", "актуальный мир", "отношение достижимости.

7.2 Многозначная логика Лукасевича.

Понятие многозначной логики. 3-х значная логика Лукасевича. Три истинностных значения: истина, ложь, неопределенно(недетерминировано, возможны - другие названия третьего значения). Обоснование Лукасевичем 3-го значения истинности в статье "О детерминизме". Два аргумента защитников тезиса о детерминизме: принцип причинности и закон исключенного третьего. Контраргументы Лукасевича. Новаторская формулировка Лукасевичем принципа исключенного третьего "Т(р) либо F(не-р)" и принципа двузначности (бивалентности)- где Т, F - соответственно операторы "истинно, что..." и "ложно, что,..".

Таблицы истинности для 3-х значной логики Лукасевича как надстройка над классическими таблицами истинности посредством добавления 3-го значения истинности - неопределенно. Отрицание и импликация -исходные логические операции в 3-х значной логике Лукасевича. Определение остальных операций. Понятие общезначимой формулы как формулы, принимающей при любом приписывании значений истинности, выделенного значения "истинно". Необщезначимость в 3-х значной логике Лукасевича формул, представляющих классические законы исключенного третьего и запрета противоречия. Аксиоматизация 3-х значной логики Лукасевича. Аксиомы, правила вывода/модус поненс, подстановки/, понятие доказательства и доказуемой формулы.

Табличное определение модальных операторов необходимо, возможно, случайно в 3-х значной логике Лукасевича,

Матричный способ получения 1 н-значных логик Лукасевича.

8. Индуктивная логика.

Дедуктивные и индуктивные (правдоподобные) рассуждения, специфика индуктивных рассуждений: истинность посылок не гарантирует истинности заключения, в заключении больше информации (знания), чем в посылках.

Виды индуктивных рассуждений: обобщающая индукция, методы установления причинных зависимостей, аналогия. Обобщающая индукция: полная и неполная. Полная обобщающая индукция - эмпирическая и математическая. Схема рассуждений (посылки и заключения) по полной обобщающей эмпирической индукции. Неполная обобщающая эмпирическая индукция, ее отличие от полной. Виды неполной обобщающей эмпирической индукции: популярная и научная. Схемы рассуждений по неполной индукции (популярной и научной), их различие. Статистическое истолкование неполной индукции. Условия повышающие степень обоснованности заключений по неполной научной индукции.

Индуктивные метода установления причинных зависимостей явлений Бэкона-Милля. Метод сходства, метод различия, метод сопутствующих изменений, соединенный метод сходства и различия, метод остатков.

Рассуждение по аналогии, его структура. Вероятностный характер заключения в рассуждении по аналогии. Основное вида рассуждений по аналогии.

Индуктивные рассуждения как рассуждения по подтверждению либо опровержению индуктивных обобщений (гипотез, предположений) свидетельствами. Обратная связь между посылками и заключением в дедуктивном и индуктивном отношении следований. Доказательная схема опровержения и эвристическая схема подтверждения. |

Случай, когда индуктивное обобщение (предположение, гипотеза) есть индуктивное следствие из истинного либо ложного утверждения (принципа): доказательная схема подтверждения, эвристическая схема опровержения.

Случай конкурирующих гипотез: доказательная схема выбора между несовместимыми гипотезами, эвристическая схема выбора между несовместимыми гипотезами.

Роль индуктивных рассуждений для анализа методологических проблем естественнонаучного и гуманитарного знания.


о


••'*

9. Логические основы теории аргументации.

Доказательство как логико-методологическая форма научного познания. Структура доказательства: тезис, аргумент, демонстрация. Опровержение как логико-методологическая форма научной критики.

Виды доказательства: прямое и косвенное. Прямое доказательство. Косвенное доказательство: а) доказательство от противного (апогогическое), доказательство через исключение альтернатив (отрицающе-утверждающий способ рассу:ждения в разделительно-категорическом умозаключении). Вида опровержения: прямое и косвенное. Косвенное - опровержение путем сведения к абсурду.

Требования к тезису: тезис должен нуждаться в доказательстве, тезис должен быть ясен (после всех уточнений тезис не должен изменяться).

Тезис и вид суждения. Тезис, выраженный общим суждением, легко опровергается, но трудно доказывается. Тезис, выраженный частным суждением, тяжело опровергать, но легко доказывать. Требования к тезису, выраженного сложным суждением. Возможные эквивалентные преобразования тезиса, выраженного сложный суждением. Тезис и модальность суждения. Логические ошибки в отношении тезиса: потеря тезис, подмена тезиса (полная или частичная).

Требования к аргументам: аргументы должны быть истинными утверждениями (в силу соответствия фактам или как прежде доказанным положения), независимость обоснования аргументов от тезиса, совокупность аргументов должна быть непротиворечивой, совокупность аргументов должна быть достаточной для вывода тезиса. Логические ошибки в отношении аргумента: ложный аргумент, предвосхищение основания, противоречивые аргументы. Нелояльные аргументы, как разновидность ошибочных аргументов: аргумент к авторитету, аргумент к публике, аргумент к силе, жалости, тщеславию и др.

Требования к демонстрации: не нарушать правил вывода. Ошибки в демонстрации: логический круг, нарушение соответствующих правил вывода. Параллогизм, софизм.

Планы семинарских занятий( с указаниями к самостоятельной подготовке)

Понятие.(2 часа).

I.Общая характеристика понятий. Содержание и объем понятия. Виды понятий.

2. Вида отношений между понятиями.

3. Логические операции с понятиями. Обобщение и ограничение понятий.

4. Логическая операция деления понятий. Виды деления. Правила и возможные ошибки в делении понятий.

5. Логическая операция определения понятий. Правила определения и возможные ошибки в определениях понятий. Виды определений.

Литература.

1.Бочаров В.А., Маркин В.И. Основы логики. 1998 г. (2000 , 2002 )

2. Войшвилло Е.К. Понятие как форма мышления. М., 1989.

3. Горский Д.П. Определение. М. 1974.

4. Ивлев Ю.В. Логика. М., 2001.

5. Солодухин О. А. Логика. Ростов-на-Дону. Феникс.2000г.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ


  1. Общая характеристика понятий.

  2. Виды понятий.

  3. Операция ограничения, обобщения и деления понятий

  4. Теоретико-познавательные характеристики определений.

  5. Явные и неявные определения.

РЕКОМЕНДАЦИИ.

Лучше пользоваться книгой «Ивлев Ю.В. Логика», глава «Понятие». Практические навыки решения задач по этой теме рассматриваются в аудитории. Эта тема обычно не вызывает затруднений. Для более глубокого изучения темы "Понятие" рекомендуем изучить монографии: Войшвилло Е.К. Понятие как форма мышления. М., 1989., и Горский Д.П. Определение. М. 1974.



Классическая логика высказываний. Теория моделей(2 час).

1. Понятие формализованного языка. Формальный язык логики высказываний. Понятие формулы, подформулы.

2. Логические условия истинности высказываний. Таблицы истинности. Классификация формул по логическим условиям истинности.

3. Логические отношения между формулами по истинности и ложности. Понятие о функциональной полноте систем логических связок

4. Отношение логического следования. Корректные и надежные рассуждения.

5. Аналитические таблицы.



Литература

1. Бочаров В.А., Маркин В. И. Основы логики. М., 1994.Гл.3, §3.

2. Войшвилло Е.К. Символическая логика: классическая и релевантная М.,1987. Гл. 3, §4.

Литература

1. Бочаров В.А., Маркин В. И. Основы логики. М., 1994.Гл.3, §3.

2. Войшвилло Е.К. Символическая логика: классическая и релевантная М.,1987. Гл. 3, §4.

3. Солодухин О. А. Логика. Ростов-на-Дону. Феникс.2000г.Гл. 3

РЕКОМЕНДАЦИИ

В этой теме важно научиться пользоваться таблицами истинности и на основании этого усвоить классификацию формул по логическим условиям истинности, разобраться с понятием логического следования (лучше пользоваться учебником: Солодухин О. А. Логика. Ростов-на-Дону. Гл.3). Надо также усвоить метод аналитических таблиц(лучше по учебнику Бочаров В.А., Маркин В. И. Основы логики. М., 1994.Гл.3, §3.)

С практической точки зрения важно знать, как проверить, что данная формула является общезначимой (логическим законом) либо противоречивой, как проверить, что из данных посылок логически следует заключение? Метод аналитических таблиц - удобный инструмент для указанных проверок.

Надо изучить указанные параграфы из учебников, разобраться в примерах, в которых используется метод аналитических таблиц. Проверить себя на каком либо примере известной Вам общезначимой и противоречивой формулы.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ.



  1. Что значит утверждение: логика высказываний разрешима.

2. Что значит, что построение аналитической таблицы для анализируемой формулы покоится на рассуждении от противного?

3.Что такое правило редукции? Сформулируйте правила.

4.Укажите, применение, каких правил редукции расщепляет (разбивает) некоторый данный список формул на два подсписка формул?

5. Дайте определение аналитической таблицы.

6.Что значит, что данный подсписок формул замкнут?

7.Дайте определение понятие замкнутой аналитической таблицы.

8. Дайте определение общезначимой и противоречивой формулы в терминах понятия "замкнутая таблица".

9. Постройте аналитические таблицы для данных формул в предположении, что они необщезначимы: (А  (В С))  (В  (А С)), ((А  В)А)А, (А  В)  ((А  С) (В С)), (А В) ((А  С) (В  С)).

10. Постройте аналитические таблицы для данных формул в предположении, что они не являются противоречивыми: (А  (В С))  (В (А С)),

((А  В)А) А,  ((А  В)  ((А  С) (В С))), (А В)   ((А  С) (В  С)).



Классическая логика высказываний. Теория доказательства (4 час).

1. Схемы правильных выводов традиционной логики в языке логики высказываний.

2. Формальная аксиоматическая система. Понятие доказательства и доказуемой формулы. Теорема дедукции.

3. Основные требования к адекватной формализации общезначимых формул: корректность, полнота и непротиворечивость,

4. Формальная система натурального вывода. Понятие вывода и выводимой формулы. Правила вывода.

РЕКОМЕНДАЦИИ

По этой теме базовые понятия излагаются во время обзорной лекции, там же даются образцы решения задач. Надо лишь закрепить этот материал, используя соответствующую литературу.

Классическая логика предикатов. Теория моделей (4 час).

I. Формализованный язык классической логики предикатов.

2. Понятие модели. Определение истинностных значений формулы в модели. Понятие выполнимой (непротиворечивой), общезначимой и невыполнимой (противоречивой) формулы.

3. Косвенные методы проверки общезначимости формул: метод поиска контрмодели и метод аналитических таблиц.

4. Отношение логического следования. Корректные и надежные рассуждения в языке классической логики предикатов,

5. Основные законы логики предикатов.



Классическая логика предикатов. Теория доказательства (8 час).

1. Аксиоматическое построения логики предикатов (формальная аксиоматическая система). Теорема дедукции.

2. Формальная система натурального вывода.

3. Смысл теорем полноты и непротиворечивости. Проблема разрешимости.



Литература

1. Бочаров В.А., Маркин В. И. Основы логики. М., 1994 (2000,2002). Гл.3.

2. Войшвилло Е.К. Символическая логика: классическая и релевантная М.,1987. Гл. 2, 3, 4 (§ 8, § 10).

3.Солодухин О. А. Логика. Ростов-на-Дону. Феникс.2000г. Гл.5.

РЕКОМЕНДАЦИИ

Целью самостоятельной работы по этой теме является закрепление того материала, который был изложен на лекциях.

Прежде всего, надо усвоить основные понятия логики предикатов первого порядка: понятия модели, условия истинности и ложности элементарных формул, условие истинности и ложности формул, главным знаком которых является конъюнкция, отрицание, дизъюнкция, импликация. Наконец, условие истинности и ложности формул, главным знаком которых являются кванторы. Надо вполне понимать определения общезначимой, противоречивой и выполнимой формулы.

На основании знания содержания указанных понятий используйте косвенный метод - метод построения контрмодели для проверки свойства быть общезначимой формулой. По учебнику "Солодухин О. А. Логика. Ростов-на-Дону. Феникс.2000г. Гл.5" изучите метод модельных конструкций (модельных множеств).

Надо усвоить метод построения аналитических таблиц для формул языка логики предикатов первого порядка. Для этого надо изучить кванторные правила редукции. Особо надо обратить внимание на правила редукции, в которых вводятся новые параметры, т.е. параметры не встречающихся на предыдущих шагах построения аналитической таблицы для фиксированной формулы. Это правила редукции для отрицания квантора общности и правило для формулы, которая начинается с квантора существования (см.: учебник Бочарова В.А., Маркина В. И. Основы логики. Гл.3, § 3). Эти же правила несколько иначе излагаются в учебнике: Войшвилло Е.К. Символическая логика: классическая и релевантная М.,1987. Гл. 3 (§ 5) Формулировки правил редукции в этих учебниках эквивалентны.

Наконец, надо усвоить аксиоматическое построение исчисление предикатов и формулировка логики предикатов в виде дедуктивной системы натурального вывода. Самое главное - усвоить ограничения на применение кванторных правил (подстановка терма вместо свободного вхождения переменных, условий на вхождение свободных и связанных переменных в правилах).

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ


  1. Что такое модель?

  2. Сформулируйте условия истинности и ложности формул в модели (индукцией построению формулы).

  3. Сформулируйте определение общезначимой, противоречивой и выполнимой формулы.

  4. Сформулируйте аксиомы и правила вывода в аксиоматическом исчислении.

  5. Постройте доказательства следующих формул: хР(х)   хР(х), хР(х)  х Р(х), х у Р(х,у)  у х Р(х,у).

  6. Пользуясь методом модельных конструкций доказать общезначимость формул из предыдущего задания.

  7. Пользуясь методом аналитических таблиц, покажите, что формулы из задания 5 являются общезначимыми.

  8. Является ли первопорядковая логика предикатов разрешимой?

  9. Сформулируйте теоремы о корректности, непротиворечивости и полноте логики предикатов первого порядка. Сформулируйте схемы (основные идеи) доказательства этих теорем.

Традиционное учение о суждении.

Простой' категорический силлогизм (4 час).

1. Суждение. Структура и виды простых суждений.

2. Распределенность терминов в категорических суждениях

3. Логический квадрат. Непосредственные выводы по логическому квадрату.

4. Непосредственные вывода: обращение, превращение, противопоставление субъекту, противопоставление предикату.

5. Структура категорического силлогизма, Фигуры и модусы силлогизма,

6. Способы проверки корректности (правильности) силлогизма.

7. Энтимема, полисиллогизм, сорит.

8. Перевод категорических суждений в язык логики предикатов.

Литература


  1. Бочаров В.А., Маркин В. И. Основы логики. М., 1994 (2000,2002). Гл.5.

РЕКОМЕНДАЦИИ

Особых трудностей при изучении этой темы нет. Конечно, надо хорошо усвоить набор понятий: больший, меньший, средний термины; фигуры, модусы, общие правила силлогизмов и другие понятия.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ


  1. Сформулируйте общие правила (правила терминов и посылок). Для чего предназначены эти правила?

  2. Охарактеризуйте негативную традиционную силлогистику.

  3. Что значит утверждение, что негативная традиционная силлогистика является фрагментом логики предикатов.

  4. Что такое энтимема?

  5. Проверьте, являются ли силлогистические выводы корректными? Сначала приведите посылки и заключение силлогизма к стандартному виду.


5а) Долг христианина - не одобрять тех, кто совершает преступные действия.

Те, кто сражается на дуэли, совершают преступное действие.

Следовательно, долг христианина - не одобрять тех, кто сражается на дуэли.

5б). Есть безумцы, говорящие истину.

Всякий, кто говорит истину, заслуживают того, чтобы к ним прислушивались.

Следовательно, есть люди, которые заслуживают того, чтобы к ним прислуживались, и которые, тем не менее, безумны.




следующая страница >>



Истинное одиночество — это присутствие человека, который тебя не понимает. Элберт Хаббард
ещё >>