Новые технологии получения энергии без использования органического или ядерного топлива - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Название работы Кол-во страниц Размер
Технологии регенерации отработавшего ядерного топлива, утилизации... 1 44.37kb.
Оптимизация технологии изготовления уран-молибденового модельного... 1 90.99kb.
Оценка состояния отработавшего ядерного топлива при длительном хранении 1 21.36kb.
Реферат учащейся 4 «А» группы Масловой Марины Игоревны 2006 год Немного... 1 165.22kb.
Методы контроля и анализа качества углей 1 126.88kb.
Краткий обзор новых патентов на оборудование для транспортировки... 1 109.12kb.
Термоэмиссионный генератор для прямого получения электрической энергии... 1 10.78kb.
Определение оптимальных условий процесса десублимации летучих фторидов... 1 69.26kb.
Плюсы и минусы атомной энергетики 1 22.76kb.
Перспективные направления создания экологически безопасных транспортно-упаковочных... 1 84.5kb.
Новые технологии получения и переработки электродных материалов для... 4 775.81kb.
Опасности военного характера и присущие им особенности. Поражающие... 1 190.01kb.
Направления изучения представлений о справедливости 1 202.17kb.

Новые технологии получения энергии без использования органического или ядерного топлива - страница №1/1

НОВЫЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ЭНЕРГИИ

БЕЗ ИСПОЛЬЗОВАНИЯ ОРГАНИЧЕСКОГО ИЛИ ЯДЕРНОГО ТОПЛИВА

Андреев Е.И., Смирнов А.П., Шумков А.А. Россия


Бережнев Ю.А., Устименко Д.А., Лукьянчиков Н. И. Украина
Международный Клуб Ученых. Россия, Санкт-Петербург,

http://www.shaping.ru/mku E-mail science@shaping.Org
ТОПЛИВА 1. Представление о естественной энергетике
Природа обходится без использования органического или ядерного топ­лива, расходуемого в традиционной энергетике. Затраты энергии на образова­ние всего нового в природе и поддержание его функционирования обеспечи­ваются энергообменом с окружающей средой путем перетока мелких положи­тельно заряженных частиц-электрино, открытых в 1982 году, находящихся по­всеместно в виде электринного газа, более известного под названием эфир. Та­кая, природная, энергетика называется естественной.

Традиционно считают, что горит топливо, которое наделено свыше дан­ным свойством - теплотворной способностью топлива. По ней делают расчет мощности тепловыделения при горении и взрыве (быстром горении). Со времен Лавуазье (1773г.) горение отождествляют с химической реакцией окисления топ­лива. Из этих посылок следуют и соответствующие методы оптимизации процес­сов горения, как по экономии топлива, так и по экологии, связанной с вредностью продуктов горения.

Для оптимизации применяют различные катализаторы, топливораспыливающие устройства, регуляторы соотношения топливо - воздух, присадки к топли­ву и т. п. Все эти меры позволяют экономить до 5 ... 1 0% топлива, что соизмеримо с погрешностью измерений. Снижается и содержание вредности в продуктах сго­рания, за исключением углекислого газа, а также теплоты уходящих газов - до 60. . .70% и более от теплотворной способности топлива.

Однако известно, что окислитель - чистый кислород взрывается в присутст­вии следов углеводородов (топливо, смазочное масло, органические проклад­ки...). Огромная мощность взрыва никак не соответствует теплотворной способ­ности тех микрограммов «следов», например масла, которые этот взрыв вызвали.

Более того, кислород взрывается вообще при отсутствии углеводородов, напри­мер, от резкого удара, взрыва ВВ, облучения и т.п. Эти факты показывают, что горит не топливо, а окислитель - кислород, а топливо как бы и вообще не нужно.

В соответствии с изложенными фактами и известными физическими явле­ниями разработан механизм горения. Кратко, он состоит в том, что в плазме (пла­мени) имеющий отрицательный заряд электрон электродинамически взаимодей­ствует с положительным ионом (атомом) кислорода, вырывая с его поверхности мелкие положительно заряженные частицы. Вылетая с большой скоростью эти частицы отдают кинетическую энергию плазме, нагревая ее, и удаляются в виде фотонов света. За счет убывших частиц атом кислорода приобретает дефект (не­достаток, дефицит) массы, которая составляет примерно одну миллионную долю процента. Столь незначительная убыль позволяет сохранить кислороду свои хими­ческие свойства и восполняется в природных условиях. Как видно, согласно со­временным нетрадиционным представлениям обычное горение является атомным процессом частичного распада (расщепления) кислорода. Топливо при горении яв­ляется донором (поставщиком) свободных электронов в плазму. По окончании процесса энерговыделения исходные продукты, образовавшие плазму, превраща­ются в продукты горения - окислы. Таким образом, окисление является не причи­ной и сутью процесса горения топлива, а его следствием.

Из физического механизма горения следуют, кроме указанных выше, дру­гие меры оптимизации, позволяющие выполнить разрушение (катализ - по-гречески) молекул кислорода на атомы и свободные электроны. Это достигается обработкой воздуха магнитным, электрическим и световым потоками. Разработа­ны и опробованы несколько типов приборов для этой цели, которые вместе со способом горения запатентованы. Оптимизаторы позволяют снизить расход топ­лива, например, в двигателях внутреннего сгорания, в два и более раз, а в перспек­тиве вообще отказаться от топлива (за счет свободных электронов кислорода). В таких автотермических («бестопливных») режимах горения в качестве атомного горючего целесообразно использовать общедоступные вещества - воздух и воду. При этом, как видно на примере обычного горения, экология не страдает. Более того, в связи с исключением топлива, в продуктах горения вовсе не будет вредных окислов.

Новая технология описанного выше щадящего процесса расщепления на элементарные частицы с выделением энергии, запасенной природой и аккуму­лированной в веществе, названа фазовым переходом высшего рода (ФПВР).

Другой новой энергетической технологией является использование коле­баний атомов. Колебание атомов, молекул и их агрегатов в газах, жидкостях и твердых телах поддерживается эфиром путем перетока электрино из окружаю­щего пространства и является неиссякаемым источником энергии. Примером применения этой технологии может служить так называемая вечная лампочка Кушелева, созданная реально в 2002 году. В ней собственные колебания сапфи­ровых сфер приведены в резонанс с колебаниями атомов кристаллической ре­шетки, которые задействованы как естественные задатчики частоты. Такие лам­почки были в древнем Египте. Так что всякое новое - это повторение утрачен­ного старого. Лампочка Кушелева - высшее достижение в естественной энерге­тике.

Кориолисово самовращение - также источник даровой энергии. После раскрутки какого-либо ротора, с движением среды по радиусу к оси вращения, до уравнивания силы трения с силой Кориолиса, последняя, действуя в сторону вращения, продолжает раскрутку до оборотов, равновесных нагрузке. Природ­ным примером является смерч, в котором движущей силой течения воздуха в радиальном направлении служит разность атмосферного давления и меньшего давления на оси вращения. Последним техническим достижением в этой энер­гетической технологии является создание вихревого двигателя Потапова, ре­альные испытания которого в автономном режиме (без топлива) производились в составе электростанции мощностью 50 кВт.

Разгон звуковых и ударных волн - в газах, жидкостях, твердых телах и в эфире (электринном газе) происходит за счет природной энергии колебаний их атомов и молекул. Самым простым примером получения даровой избыточной энергии

являются обычные сходящиеся насадки (конические, коноидальные, ступенчатые, брандспойты ...).

Последние исследования Л.С. Котоусова (ЖТФ, 2005) показали, что в них на выходе струи, например, воды происходит увели­чение полного напора и мощности в 2...4 и даже в 10 раз. Интерес представляет также насадок Шестеренко для прокачивания воздуха, работающий вообще ав­тономно после пуска от внешнего компрессора. Насадок Шестеренко использо­вался реально, например, для очистки днища кораблей в г. Николаеве.

Резонанс собственных и вынужденных частот колеблющихся объектов позволяет увеличить амплитуду энергообмена и осуществить накачку энергии из окружающей среды в виде потока электрино (эфира) за счет разности потен­циалов (концентрации) вне и внутри объекта (в точках перехода амплитуды че­рез ноль). Историческим примером может служить разрушение Египетского моста в Санкт-Петербурге при ритмичном (в ногу) проходе через него конни­цы. Имеется также опыт создания виброрезонансных энергетических техноло­гий (ВРТ) непосредственно для получения энергии, например, в вибродвигате­ле В. И. Богомолова с избыточной мощностью, в 100 раз превышающей затра­ченную на привод задатчика колебаний.

Кавитация как резонанс частоты колебаний молекул жидкости с часто­той колебаний пузырьков пара в ней в режиме предюшения является источни­ком и новой технологией получения природной избыточной мощности, пре­имущественно, в виде тепловой энергии. Большое распространение получили вихревые, гидравлические и другие типы теплогенераторов, в которых достиг­нуты большие значения коэффициентов избыточной мощности: от 2... 10 (По­тапов, Кладов ...) до 20... 100 (Канарёв, Колдамасов...).

Магнит - является вечным источником природной энергии.

Электрет - тоже источник природной энергии как электрический аналог магнита.

Их использование в энергоустановках позволяет получить энергию без органического и ядерного топлива. Полностью естественной энергетике посвя­щена книга I1I



2. Представление о технических решениях

для производства электроэнергии

2.1. Двигатели внутреннего и внешнего сгорания.
Карбюраторные, эжекторные и дизельные ДВС, двигатели Стерлинга и двигатели других типов могут быть переведены на воздушный бестопливный цикл путем их оснащения соответствующими приборами без изменения конструк­ции ДВС. Эта работа является перспективной, так как в настоящее время промыш­ленность выпускает 2,5 миллиона ДВС в год, а в эксплуатации одновременно на­ходятся более 10 миллионов ДВС. Перевод их на воздушный бестопливный цикл позволит улучшить эффективность использования и экологическую обстановку на Земле в целом.

2.2. Газотурбинные установки (ГТУ).

Поскольку камеры сгорания ДВС по принципу не отличаются от камер сгорания ГТУ, то последние также могут быть переведены на воздушный бестоп-ливный цикл. При этом следует отметить особую возможность существенного увеличения дальности полета самолетов в связи с исключением необходимости в дозаправках топливом и уменьшением полетного веса на величину веса топлива.



2.3. Котельные установки.

Горелки и камеры сгорания котлоагрегатов на теплоэлектростанциях и отопительных котельных также могут быть переоборудованы на воздушный бес­топливный цикл как ДВС и ГТУ.

Тысячи котельных перестанут загрязнять атмосферу и нуждаться в топливе. Люди получат свет и тепло бесперебойно в нужном количестве в любых, в том числе, в самых отдаленных районах.

2.4. От персональных компьютеров и транспортных средств -к персональным энергоустановкам.

С переводом энергетики на воздушный или другой бестопливный цикл по­является возможность создания персональных энергетических бестопливных ма­шин (ЭВМ). Действительно, ЭВМ разработаны и существуют давно, но только с появлением персональных ЭВМ началось их широкое и массовое распростране6 ние в мире. Отсутствие необходимости в топливе и повсеместная доступность

воздуха создает необходимые условия для изготовления персональных ЭВМ для дома, для семьи, вырабатывающих электрическую и тепловую энергию. Отпадает необходимость в сложных и дорогостоящих электро- и теплосетях, других соору­жениях.

2.5. Как быть с ядерной энергетикой?

Экологическая опасность традиционной ядерной энергетики не вызывает никакого сомнения. Поэтому ее нужно «сворачивать» как можно скорее, пока не поздно. Именно чрезмерный распад традиционного ядерного топлива представ­ляет смертельную опасность для человечества. В естественной же энергетике пользуются только теми дарами (щадящий распад), которые нам милостиво раз­решает природа. Только тогда незначительный дефицит массы восполняется в природных условиях, и только тогда соблюдается экология.

Что касается термоядерной энергии, теория показывает, что энерговыделе­ние при синтезе вещества примерно на 20 порядков меньше, чем при его расщеп­лении на элементарные частицы. Выделяющаяся при синтезе энергия является энергией частичного расщепления атомов при их взаимном сближении и «склеи­вании» в молекулы продуктов реакции. То есть «энергии синтеза» вообще нет в природе.



2.6. Энергетика и оружие, ТЭК и ВПК.

Продавать другим странам орудия убийства людей - безнравственно. К то­му же проданное на сторону оружие может быть повернуто против самой страны -производителя и продавца. Наверно, лучше будет, если высокий промышлен­ный и научно-технический потенциал ВПК направить на скорейшее освоение и массовое распространение установок естественной энергетики. Эта «золотая жи­ла» не оставит без работы и дохода ни ТЭК, ни ВПК.



3. Технический прогресс и развитие мировой цивилизации

3.1. Социальные аспекты энергетики
В мире большое количество отдельных ученых, инженеров, специалистов различных отраслей, изобретателей, практиков, мелких и крупных предприятий и организаций локально решают тактические задачи совершенствования и развития энергетики.

Однако, отсутствие внятной теории и кризис классической физики до сего времени не позволили добиться успеха в этом деле. Медленно, но неуклонно и все быстрее ощущается приближение энергетического кризиса, в основе которого ле­жит топливная проблема Земли.

Топливная проблема Земли заключается в исчерпаемости запасов органиче­ского и ядерного топлива, а также - в отрицательном воздействии традиционной энергетики на природу и людей, плоть до возможности исчезновения цивилиза­ции.

3.2. Социальные последствия традиционной энергетики.

• Энергетический голод вследствие исчерпания запасов топлива.

• Природные катастрофы в связи с потеплением климата.

• Атомные аварии с радиоактивным заражением местности.

• Загрязнение атмосферы, изменение ее газового состава.

• Электромагнитные и радиоизлучения, убивающие живую и неживую


природу.

• Возможность исчезновения цивилизации.

• Централизованная энергетика уязвима для террористов и техногенных
катастроф.

В отличие от специалистов, совершенствующих частные вопросы традици­онной науки или усиливающих ее математизацию, нами на основе самых совре­менных представлений науки, в частности, гиперчастотной физики разработаны основы естественной энергетики, в которой используются природные процессы энергообмена без расходования органического и ядерного топлива в его обычном понимании. Успешно проведены широкомасштабные натурные опытно-конструкторские работы, в частности, на автомобильных двигателях, подтвер­дившие экологическую и экономическую эффективность новых энергетических технологий на базе естественной энергетики.



3.3. Социальные перспективы естественной энергетики.

• Исключение негативных последствий традиционной энергетики.

• Сохранение естественных природных условий.

• Заселение Севера и Антарктиды в связи с возможностью получения тепла и энергии на месте.

• Развитие новых видов транспорта.

• Появление новых видов информационной связи.

• Излечение болезней энергетическими методами.

• Трансмутация химических элементов, искусственное создание необходимых веществ.

• Искусственная пища, жилище, одежда.

• Сокращение и исключение войн/

• Приближение новой культурной цивилизации.

• Децентрализация энергетики и, в связи с этим, ее неуязвимость для террори­стов и катастроф.

Итак, с учетом современного состояния общества и энергетики на основе новых экономически и экологически эффективных технологий использования ес­тественных энергетических процессов природы, развертывания интенсивного промышленного освоения и производства установок естественной энергетики, объединенными, в том числе, международными, усилиями всего общества в тече­нии ближайших 20-30 лет необходимо и возможно практически решить топлив­ную проблему Земли.

Литература.

Андреев Е.И. «Основы естественной энергетики» - СПб, изд. «Невская жемчу­жина», 2004.- 584 с.



-




Будь осторожен: кота покупай в мешке. Александр Фюрстенберг
ещё >>