Курс лекций по дисциплине «Теория механизмов и машин» - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Рабочая программа по дисциплине опд. Ф. 02. 03 Теория механизмов... 1 171.13kb.
Теория механизмов и машин 16 563.07kb.
Примерная программа дисциплины теория механизмов и машин 1 326.36kb.
Методические указания по курсовому проекту по теории механизмов и... 1 177.66kb.
2638 Задания к контрольной работе по дисциплине «теория механизмов... 1 384.6kb.
Учебно-методической документацией за 2011/2012 учебный год по дисциплине... 1 31.83kb.
Структурный и кинематический анализ 1 267.19kb.
Рабочая учебная программа по дисциплине теория машин и механизмов 1 173.19kb.
Рабочая учебная программа по дисциплине теория машин и механизмов 1 173.31kb.
Рабочая программа По дисциплине «Теория механизмов и машин» По направлению 1 194.22kb.
Рабочая программа по дисциплине опд. Ф. 02. 02 Теория механизмов... 1 185.85kb.
Структурный и кинематический анализ 1 267.19kb.
Направления изучения представлений о справедливости 1 202.17kb.

Курс лекций по дисциплине «Теория механизмов и машин» - страница №1/3

Курс лекций по дисциплине «Теория механизмов и машин»
Лекция 1. Введение. Структура механизмов.
Вопросы, рассматриваемые на лекции. ТММ - научная основа новых машин и механизмов. Исторический очерк развития ТММ. Цели и задачи курса. Разделы ТММ. Основные виды звеньев. Кинематические пары. Степень подвижности механизмов. Структурная классификация механизмов. Условия существования кривошипа. Модификация механизмов при замене пар.

Некоторые основные понятия.

Теория механизмов и машин (ТММ)- наука, изучающая строение, кинематику и динамику механизмов в связи с их анализом и синтезом.

ТММ включает три основные части:



  1. Структурный и кинематический анализ механизмов- изучение теории строения механизмов, исследование движения тел образующих механизм с точки зрения геометрии без учета сил, вызывающих движение этих тел.

  2. Синтез механизмов- проектирование механизмов по заданным кинематическим и динамическим условиям.

  3. Динамический анализ механизмов- определение сил, действующих на звенья механизма во время их движения, изучение взаимосвязи между движениями тел, их массами и силами действующими на них.

Машина- это устройство, создаваемое человеком, для облегчения физического и умственного труда, увеличения производительности путем частичной или полной замены человека.

Машина- устройство для преобразования энергии, информации или материалов.

Машины состоят из механизмов.



Механизм- система тел, предназначенная для преобразования движения одних тел (одного или нескольких) в требуемое движение других.

Например: механизм подачи заготовок, механизм сцепления, механизм торможения и т.д.

Механизмы состоят из звеньев и кинематических пар.

Звено- одно или несколько жестко соединенных твердых тел.

Кинематическая пара- соединение двух звеньев, допускающее относительное движение.

Звенья различают входные (ведущие), выходные (ведомые) и промежуточные.



Основные виды звеньев: стойка, кривошип, коромысло, ползун, кулиса, кулачок, зубчатое колесо.

Кроме перечисленных жестких звеньев, в механизмах применяют гибкие (цепи, ремни), упругие (пружины, мембраны) звенья, а также жидкие и газообразные (масло, вода, газ, воздух и т.д.).

Звенья обозначают цифрами, причем нумерация ведется от ведущего звена, а стойке присваивается «ноль».

Кинематические пары обозначают заглавными латинскими буквами (A,B,C,D и т.д.).


Основные виды кинематических пар (таблица 1)


Кинематическая схема механизма – чертеж механизма в выбранном масштабе с соблюдением условных обозначений звеньев и кинематических пар.

Различают кинематические пары высшие и низшие.



Высшая кинематическая пара – звенья соприкасаются по линии или в точке.

Низшая кинематическая пара – звенья соприкасаются по поверхностям (цилиндрический или шаровой шарниры, ползун и кулиса)

Различают кинематические пары с геометрическим и силовым замыканием



Геометрическое замыкание (характерно для низших пар) – соприкосновение элементов звеньев обеспечивается их формами (цилиндрический шарнир, шаровой шарнир, ползун и кулиса).

Силовое замыкание (характерно для высших пар) – соприкосновение обеспечивается силой веса, силой сжатия пружины и т.д.

Высшие пары изнашиваются сильнее, чет низшие, так как чем больше поверхности, тем меньше удельное давление (давление на единицу площади).

Различают пять классов кинематических пар.

Свободно движущееся в пространстве тело имеет шесть степеней свободы (W) – шесть движений (три поступательных, три вращательных).

О
сновные типы звеньев механизмов (таблица 2)



Если же тело связано с другими телами, то на его движения накладываются ограничения – условия связи (U), тогда число степеней свободы не равно шести, оно уменьшается.



W=6-U

Примеры.

Класс кинематической паре присваивается по числу связей U.



Степень свободы механизма

Различают механизмы плоские и пространственные.

Степень свободы пространственных механизмов считают по формуле Сомова-Малышева:

W=6n-5p5-4p4-3p3-2p2-p1,

где n- число подвижных звеньев;

p5,p4,p3,p2,p1- число кинематических пар пятого, четвертого, третьего, второго и первого классов соответственно.

Степень свободы плоских механизмов считают по формуле Чебышева:



W=3n-2p5-p4

Степень свободы плоского механизма должна быть равна числу ведущих звеньев, то есть W=1.



Избыточные связи- это такие связи, которые повторяют (дублируют) связи, уже имеющиеся по данной координате, и поэтому не изменяющие реальной подвижности механизма.

Примеры.

Классификация плоских механизмов по системе Л.В.Ассура.(Принцип образования плоских механизмов). Согласно идее Л.В.Ассура, механизмы состоят из отдельных кинематических цепей- структурных групп (групп Ассура), степень свободы которых равна нулю (W=0).

Кроме того, механизм должен содержать только кинематические пары 5 класса (р5), если же есть пары 4 класса (р4), то одну пару р4 заменяют на звено и две пары р5 . Полученный после такой замены механизм называют заменяющим.

Так как W=0, р4=0, то из формулы Чебышева следует:

3n-2p5=0

p5=3n/2


n

2

4

6

8

p5

3

6

9

12

Структурная группа- это кинематическая цепь, степень свободы которой равна нулю и она не должна распадаться на более простые кинематические цепи, удовлетворяющие этому условию. Число звеньев в структурной группе должно быть четным, а число пар пятого класса кратно трем.

Примеры.

Структурная группа I класса- это ведущее звено со стойкой, соединенные парой пятого класса (W=1) (рис.1).

Структурная группа II класса состоит из двух звеньев и трех кинематических пятого класса ( вращательные или поступательные).

Начиная с III класса, номер группе присваивается в зависимости от числа внутренних кинематических пар (внешние кинематические пары служат для соединения с другими группами).

Р
ис.1
Лекция 2. Кинематический анализ механизмов
Вопросы, рассматриваемые на лекции. План положения механизма. Теорема Грасгофа (условие существования кривошипа). Масштабные коэффициенты. Определение скорости и ускорения методом планов.

Некоторые основные понятия.

Теорема Грасгофа: наименьшее звено является кривошипом, если сумма длин его и любого другого звена меньше суммы длин остальных звеньев.

Кинематический анализ- изучение движения звеньев механизма вне зависимости от сил, действующих на эти звенья.

План положений механизма- графическое изображение взаимного расположения звеньев механизма в определенный момент времени.

Планами скоростей и ускорений называют векторные изображения этих параметров в заданном положении механизма.

Масштабный коэффициент физической величины- отношение численного значения физической величины в свойственных ей единицах к длине отрезка в миллиметрах, изображающего эту величину.

Примеры.

Кинематический анализ кривошипно-ползунного механизма.

Кривошипно-ползунный (кривошипно-шатунный) механизм- четырехзвенник с тремя вращательными и одной поступательной кинематическими парами. Он предназначен для преобразования вращательного движения кривошипа 1 в поступательное движение ползуна 3. При этом шатун 2 совершает сложное плоскопараллельное движение (рис.2).

Рис.2
Скорость и ускорение ползуна могут быть определены графически методом плана скоростей и ускорений.

Построение планов скоростей и ускорений начинаем с построения плана положений механизма. Для этого в масштабе КL вычерчиваем кинематическую схему механизма, с обозначением звеньев и направлением вращения кривошипа w [1/c].

Разбиваем окружность (геометрическое место точек В кривошипа) на равные углы (30о). В1- крайнее левое положение ползуна. Таким образом получили 13 положений точки В (В1 и В13 совпадают). Делая засечки на линии х-х (линия движения ползуна) радиусом ВС, находим соответствующие 13 положений точки С ползуна.

Из теоретической механики известно, что плоскопараллельное движение фигуры в ее плоскости складывается из поступательного движения вместе с точкой фигуры (полюсом) и вращательного движения вокруг этого полюса.

Скорость ползуна:

Для нахождения скорости ползуна достаточно знать величину и направление одной составляющей векторного уравнения и направление двух остальных составляющих.

- скорость ползуна (направлена вдоль оси движения ползуна)

- скорость точки В кривошипа (направлена перпендикулярно радиусу кривошипа)

- относительная скорость точки С ползуна относительно полюса В (направлена перпендикулярно шатуну ВС).

Построение плана скоростей. Из произвольно выбранного полюса Р (рис.3) откладываем вектор скорости перпендикулярно радиусу кривошипа произвольной величины и вводим масштабный коэффициент скорости . Проводим направления скоростей и . После построения плана скоростей величину скорости ползуна находим, умножая длину вектора на масштабный коэффициент скорости. На рис.2.показаны примеры построения плана скоростей и плана ускорений для угла поворота кривошипа =30о.

Построение плана ускорений. Ускорение точки С ползуна складывается из ускорения точки В кривошипа и двух составляющих (нормального и тангенциального) относительного ускорения:



- полное ускорение точки В кривошипа (направлено к центру вращения кривошипа)

Рис.3


- нормальное ускорение шатуна СВ (направлено вдоль шатуна от С к В)

- тангенциальная составляющая относительного ускорения (направлена перпендикулярно шатуну СВ).

Из произвольно выбранного полюса Q (рис.3) откладываем вектор ускорения произвольной величины и вводим масштабный коэффициент ускорения . Из конца вектора откладываем , длина вектора . Из построения находим величину , умножая длину вектора на масштабный коэффициент ускорения.


Лекция 3. Построение кинематических диаграмм.
Вопросы, рассматриваемые на лекции.

Кинематическое исследование механизмов аналитическими методами. Кинематический анализ шарнирного четырехзвенника. Кинематический анализ кривошипно-ползунного механизма. Кинематический анализ кривошипно-кулисного механизма.



Некоторые основные понятия.

Кинематический анализ кривошипно-ползунного механизма.

Перемещение, скорость и ускорение точки С ползуна могут быть определены аналитически.

Перемещение точки С ползуна:

(1)

r- радиус кривошипа, мм



- длина шатуна, мм

- угол поворота кривошипа, град

Дифференцируя (1) по времени, получим выражение для скорости точки С ползуна:

(2)

;

n-число оборотов кривошипа в минуту

Дифференцируя (2) по времени и считая угловую скорость кривошипа постоянной, находим ускорение точки С ползуна:

(3)

Построение кинематических диаграмм

1. Графическое дифференцирование начинаем с построения кинематической диаграммы перемещения SC=SC(t).Проводим две оси координат. Ось угла поворота кривошипа (ось абсцисс) разбиваем на двенадцать равных промежутков (30о).



- масштабный коэффициент угла поворота .

Из каждой точки оси абсцисс по оси ординат откладываем перемещение точки С ползуна. Масштабный коэффициент перемещения КS .


Рис. 4
2. Методом графического дифференцирования (методом хорд) строим кинематические диаграммы скорости и ускорения VC=VC(t), aC=aC(t)



- масштабный коэффициент времени

- масштабный коэффициент скорости

- масштабный коэффициент ускорения

Так как кривошип вращается с постоянной скоростью w1, то диаграммы SC=SC(t), VC=VC(t), aC=aC(t) являются одновременно диаграммами SC=SC(), VC=VC(), aC=aC().


Лекция 4. Кинематический анализ и синтез кулачковых механизмов.
Вопросы, рассматриваемые на лекции. Основные типы кулачковых механизмов. Определение минимального радиуса кулачка. Углы давления. Проектирование кулачкового механизма из условий ограничения угла давления.

Некоторые основные понятия.

К
улачковый механизм
(рис.5) представляет собой механизм с высшей кинематической парой. Ведущим звеном механизма является кулачок 1, профиль которого определяет закон движения ведомого звена- толкателя 2.
Рис.5
Различают толкатели остроконечные, роликовые, грибовидные и плоские (тарельчатые) (рис.6).

Р
ис.6


По виду движения ведомого звена различают кулачковые механизмы с поступательно движущимся толкателем и с качающимся толкателем.

Рассмотрим кулачковый механизм (рис.5) с центральным поступательно движущимся толкателем. Линия движения толкателя в таком механизме проходит через ось вращения кулачка. Различают элементы кулачка:

1.Окружность основной шайбы, очерченная наименьшим радиусом r0.

2.Профиль удаления- участок с возрастающими радиусами-векторами. Угол поворота кулачка, соответствующий прохождению этого кулачка под острием толкателя, называется углом удаления и обозначается уд. Толкатель за это время поднимается из крайнего нижнего положения в крайнее верхнее положение и проходит путь h, называемый ходом толкателя.

3.Профиль верхнего останова- участок , очерченный максимальным радиусом rmax. Ему соответствует угол поворота кулачка в.о, называемый угол верхнего останова. Толкатель в это время остается неподвижным в крайнем верхнем положении.

4.Профиль приближения- участок с уменьшающимися радиусами-векторами. При прохождении под острием толкателя этого участка, толкатель опускается из крайнего верхнего в крайнее нижнее положение, а кулачок поворачивается на угол приближения пр.

5.Профиль нижнего останова- участок , очерченный наименьшим радиусом r0 . Во время прохождения этого участка под острием толкателя последний остается неподвижным в крайнем нижнем положении. Угол поворота кулачка, соответствующий этому участку профиля, называется углом нижнего останова и обозначается н.о.

6.Профиль кулачка, очерченный кривыми , и называется рабочим профилем, а сумма углов поворота кулачка, соответствующих этому профилю, называется рабочим углом, то есть:раб=уд+в.о+пр

Кинематический анализ кулачковых механизмов (рис.7).

Рис.7
Лекция 5. Кинематический анализ зубчатых передач.


Вопросы, рассматриваемые на лекции. Классификация зубчатых передач. Геометрические элементы зубчатого колеса. Зубчатые механизмы с неподвижными осями. Планетарные механизмы. Дифференциальные механизмы.

Некоторые основные понятия.

Передаточное отношение отдельной зубчатой пары равно: ,

где z1 и z2- числа зубьев ведущего и ведомого колес.

В
случае червячной передачи (рис.8) через z1 обозначают число заходов червяка, а через z2 число зубьев червячного колеса.

Рис.8
Передаточное отношение зубчатой пары с внешним зацеплением (рис.9) имеет знак «минус», так как ведущее и ведомое колеса вращаются в противоположных направлениях, передаточное отношение пары с внутренним зацеплением (рис.10)  знак «плюс».



Рис.9 Рис.10
В случае реечного зацепления (рис.11) вращательное движение колеса с угловой скоростью  преобразуется в поступательное движение рейки со скоростью .

,

где rн  радиус начальной окружности колеса;

m модуль зацепления.

П
ри повороте колеса на угол, равный 360о, рейка продвигается на величину шага .

Рис.11 Рис.12
На рис.12 показана коническая зубчатая пара.

К зубчатым механизмам с подвижными осями относятся планетарные зубчатые механизмы (с одной степенью свободы) и дифференциальные зубчатые механизмы (с двумя степенями свободы). На рис.13 представлена одна из возможных схем дифференциального механизма.

Р
ис.13
Соотношение между угловыми скоростями зубчатых колес и водилом дифференциального механизма определяется формулой:

.

(4)


Индекс «н» указывает, что в данном случае водило является неподвижным звеном, 1-ведущее звено, 3-ведомое звено.

Если колесо z3 закрепить неподвижно, то мы получим планетарный механизм. Передаточное отношение от зубчатого колеса z1 к водилу планетарного механизма определяется формулой:



.

(5)

Для подсчета кинетической энергии механизма, выбора подшипников при проектировании планетарных механизмов необходимо знать угловую скорость сателлитов. Поскольку скорость ведущего звена z1 задана и скорость водила может быть определена с использованием формулы (5), для определения угловой скорости сателлита необходимо знать передаточное отношение от центрального колеса z1 к сателлиту или от водила к сателлиту:

.

(6)

Разделив числитель и знаменатель правой части выражения (6) на н, получим:

.

Тогда можно определить угловую скорость сателлита:



.

При определении передаточного отношения редуктора необходимо разделить его механизм на отдельные ступени. Прежде всего, следует выделить планетарную ступень, имея в виду, что в планетарную ступень входят водило, сателлиты и два центральных зубчатых колеса.

Планетарные и дифференциальные механизмы практически почти никогда не делаются с одним сателлитом, обычно сателлитов, входящих в зацепление с одними и теми же центральными колесами, несколько. Это делается для уменьшения сил инерции и разгрузки зубчатых колес механизма, уменьшения модуля зацепления и общих габаритов редуктора.

При определении числа степеней свободы следует иметь в виду, что все добавочные сателлиты (больше одного) являются пассивными связями.


следующая страница >>



Любовь — это способ услышать «Дорогой» или «Дорогая» после занятий сексом. Джулиан Барнс
ещё >>