Эйнштейн сравнивает имена Галилея и Ньютона в механике с именами Фарадея и Максвелла в науке об электричестве. Действительно, аналог - davaiknam.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Название работы Кол-во страниц Размер
Для того чтобы изучать 3 528.81kb.
Уравнение Шредингер для атома водорода в классической механике 1 51.14kb.
Приложение 2 Работа с текстом Телескоп 1 10.37kb.
И. ньютон, Ф. Бэкон и метод физики 1 31.32kb.
Лекция 3 Принцип относительности Галилея 1 76.13kb.
Лекция 3 Принцип относительности Галилея 1 135.61kb.
Крамаренко Иван 1 119.32kb.
Курс лекций по строительной механике учебное пособие 8 2610.19kb.
Н. Э. Баумана, Москва Опять работа. К вопросу о работе и энергии... 1 77.93kb.
Вопросы к шестой теме 1 19.64kb.
Галилей (Galilei) Галилео 1 33.57kb.
Банкомат действующие лица 1 171.93kb.
Направления изучения представлений о справедливости 1 202.17kb.

Эйнштейн сравнивает имена Галилея и Ньютона в механике с именами Фарадея и Максвелла - страница №1/1

Эйнштейн сравнивает имена Галилея и Ньютона в механике с именами Фарадея и Максвелла в науке об электричестве. Действительно, аналогия здесь вполне уместна. Галилей положил начало механике, Ньютон ее завершил. Оба они отправлялись от системы Коперника, ища ее физическое обоснование, которое в конце концов и было найдено Ньютоном.

Фарадей по-новому подошел к изучению электричества и магнитных явлений, указывая на роль среды и вводя концепцию поля, описываемого им с помощью силовых линий. Максвелл придал идеям математическую завершенность, ввел точный термин «электромагнитное поле», которого еще не было у Фарадея, сформулировал математические законы этого поля. Галилей и Ньютон заложили основы механической картины мира, Фарадей и Максвелл—основы электромагнитной картины мира.

Электромагнитную теорию Максвелл развивает в работах «О физических линиях силы» (1861—1862) и «Динамическая теория поля» (1864—1865). Эти работы он писал уже не в Абердине, а в Лондоне, где получил профессуру в Кинг-колледже. Здесь Максвелл встретился и с Фарадеем, который был уже стар и болен. Максвелл, получив данные, подтверждающие электромагнитную природу света, послал их Фарадею. Максвелл писал: «Электромагнитная теория света, предложенная им (Фарадеем) в «Мыслях о лучевых вибрациях» (Phil. Mag., май 1846) или «Экспериментальных исследованиях» (Ехр. Rec., p. 447), - это по существу то же, что я начал развивать в этой статье («Динамическая теория поля» —Phil. Mag., 1865), за исключением того, что в 1846 г. не было данных для вычисления скорости распространения. Дж.К.М.». Максвелл признавал приоритет Фарадея в этом открытии. Максвелл не мог знать о запечатанном письме Фарадея 1832 г. и ссылался на его статью, опубликованную в 1846 г. Но он со всей определенностью утверждал, что Фарадей уже высказал то, что он дал в своей «Динамической теории поля», за исключением количественных данных о совпадении скорости распространения света с постоянным отношением электромагнитной и электростатической единиц заряда и тока.

Максвелл был разносторонним ученым: теоретиком, экспериментатором, техником. Но в истории физики его имя прежде всего ассоциируется с созданной им теорией электромагнитного поля, которая так и называется теорией Максвелла или максвелловской электродинамикой. Она вошла в историю науки наряду с такими фундаментальными обобщениями, как ньютоновская механика, релятивистская механика, квантовая механика, и знаменовала собой начало нового этапа в физике. В соответствии с законом развития науки, сформулированным Аристотелем, она поднимала познание природы на новую, высшую ступень и вместе с тем была более непонятной, абстрактной, чем предшествующие теории, «менее явной для нас», по выражению Аристотеля.

Это обстоятельство обусловило сравнительно долгое неприятие теории Максвелла физиками, и только после опытов Герца началось ее признание. Она получила «права гражданства» в физике после опыта Майкельсона, после первых работ Лоренца по электронной теории. Таким образом, ее усвоение совпало с началом создания электронной и релятивистской физики. История созданной Максвеллом теории переплетается с историей этих областей физики, ведущих к ее современному состоянию.

Максвелл начал разрабатывать свою теорию в 1854 г. 20 февраля этого года он в письме к своему старшему другу В.Томсону пишет о своем намерении «атаковать электричество». В письме из Кембриджа от 13 ноября 1854 г. он пишет, что ему, «новичку в электричестве», удалось разрешить «огромную массу сомнений», используя немного простых идей. «Я достаточно легко получил фундаментальные принципы электричества напряжения» (т. е. электростатики), — говорит он и сообщает Томсону, что ему очень помогла аналогия с теплопроводностью, найденная Томсоном. Далее Максвелл сообщает, что хотя он восхищался, читая труды Ампера, но хотел бы сам исследовать его воззрения «философски». Ему кажется, что метод магнитных силовых линий Фарадея очень полезен для этой цели, однако другие предпочитают пользоваться понятием непосредственного притяжения элементов тока. Максвелл разрабатывает картину магнитных силовых линий, генерируемых током, говорит о магнитном поле, вводит соответствующие понятия и пишет математические уравнения.

Мысли, высказанные Максвеллом в этом письме, были разработаны в первой его работе «О фарадеевских силовых линиях», написанной в Кембридже в 1855—1856 гг. Он ставит целью этой работы «показать, каким образом непосредственным применением идей и методов Фарадея лучше всего могут быть выяснены взаимные отношения различных классов открытых им явлений». В работе «О фарадеевских силовых линиях» Максвелл строит гидродинамическую модель среды, передающей электрические и магнитные взаимодействия. Ему удается описать стационарные процессы с помощью наглядной картины движущейся жидкости. Заряды и магнитные полюса в этой картине представляют собой источники и стоки текущей жидкости. «Я старался, — писал Максвелл, — ...представить математические идеи в наглядной форме, пользуясь системами линий или поверхностей, а не употребляя только символы, которые и не особенно пригодны для изложения взглядов Фарадея и не вполне соответствуют природе объясняемых явлений».

Следующий шаг в развитии теории электромагнитного поля Максвелл сделал в 1861—1862 гг., опубликовав ряд статей под общим заглавием «О физических силовых линиях». И здесь Максвелл прибегает к механической модели электромагнитного поля. Но эта модель значительно сложнее, чем картина поля скоростей движущейся жидкости, которую он разрабатывал в предыдущей работе. Максвелл разрабатывал эту модель, используя в полной мере свой талант механика и конструктора, и пришел к своим знаменитым уравнениям. «Максвелл,—писал Больцман, — нашел свои уравнения в результате стремления доказать при помощи механических моделей возможность объяснения электромагнитных явлений, исходя из концепции близко действия, и только эти модели впервые указали путь к тем экспериментам, которые окончательно и решительно установили факт близко-действия и в настоящее время образуют наиболее простой и наиболее достоверный фундамент найденных другим путем уравнений».

Найти уравнения Максвелла нетрудно, но «вывести» их невозможно, так же как невозможно вывести законы Ньютона. Конечно, и уравнения Ньютона и уравнения Максвелла могут быть выведены из других принципов, которые приходится принимать без доказательства, но эти принципы, как и сами уравнения Максвелла или Ньютона, представляют собой обобщения опыта. «Теория Максвелла — это уравнения Максвелла»,— сказал Герц.

В «физических линиях силы» Максвелл прежде всего обосновывает выражение силы, действующей на каждый элемент среды, в которой находятся заряды, токи, магниты. Максвелл мыслит среду заполненной молекулярными вихрями, силы, действующие в этой среде в одной и той же точке, зависят от направления, они носят, как мы теперь говорим, тензорный характер. Далее Максвелл записывает свои знаменитые уравнения. Новым по сравнению с работой о фарадеевских линиях силы здесь является четкое установление связи между изменениями магнитного поля и возникновением электродвижущей силы. Его уравнение определяет «отношения между изменениями состояния магнитного поля и электродвижущими силами, ими обусловленными».

Другой важной новостью является введение понятий смещения и токов смещения. Смещение, по Максвеллу,— это характеристика состояний диэлектрика в электрическом поле. Полный поток смещения через замкнутую поверхность равен алгебраической сумме зарядов, находящихся внутри поверхности. «Это смещение, — пишет Максвелл,—не представляет собой настоящего тока потому, что, достигнув определенной величины, оно остается постоянным. Но это есть начало тока, и изменения смещения образуют токи в положительном или отрицательном направлении в зависимости от того, увеличивается смещение или уменьшается». Так вводится фундаментальное понятие тока смещения. Этот ток, так же как и ток проводимости, создает магнитное поле. Поэтому Максвелл обобщает то уравнение, которое ныне называется первым уравнением Максвелла, и вводит в первую часть ток смещения. В современных обозначениях это уравнение Максвелла имеет вид:


Далее Максвелл считает поле носителем энергии, которая распространяется по всему объему. Энергия электрического поля выражается следующей формулой:


И наконец, Максвелл находит, что в его упругой среде распространяются поперечные волны со скоростью света. Этот фундаментальный результат приводит его к важному выводу: «Скорость поперечных волновых колебаний в нашей гипотетической среде, вычисленная из электромагнитных опытов Кольрауша и Вебера, столь точно совпадает со скоростью света, вычисленной из оптических опытов Физо, что мы едва ли можем отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений. Таким образом, в начале 60-х годов XIX в. Максвелл уже нашел основы своей теории электричества и магнетизма и сделал важный вывод о том, что свет представляет собой электромагнитное явление.

Продолжая разработку теории, Максвелл в 1864—1865 гг. опубликовал свою «Динамическую теорию поля». В этой работе теория Максвелла принимает завершенный вид и новый объект научного исследования, введенный Фарадеем, — электромагнитное поле — получает точное определение. «Та теория, которую я предлагаю, — пишет Максвелл, — может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические или магнитные тела, и она может быть названа также динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производятся наблюдаемые электромагнитные явления.

Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии».

Таково первое в истории физики определение электромагнитного поля, Фарадей не употребляет термина «поле», он говорит о реальном существовании физических линий силы. Только со времени Максвелла в физике появляется понятие поля, которое служит носителем электромагнитной энергии.

Для описания поля Максвелл вводит скалярные и векторые функции координат. Векторы он обозначает заглавными буквами немецкого готического шрифта, но в вычислениях оперирует с их компонентами. Векторные уравнения он расписывает в координатах, получая соответствующие тройки («триплеты») уравнений.

В «Трактате» Максвелл пишет: «По теории, согласно которой свет есть электромагнитное возмущение, распространяющееся в той же самой среде, через которую распространяются другие электромагнитные действия, V должно быть скоростью света, численное значение которой может быть определено различными методами. С другой стороны, v - число электростатических единиц в одной электромагнитной единице и методы определения этой величины были описаны в предыдущей главе. Они являются совершенно независимыми методами определения скорости света. Следовательно, совпадение или несовпадение величины У и v обеспечивает проверку электромагнитной теории света».



Максвелл дает сводку определений V и v, из которой следует, что «скорость света и отношение единиц имеет тот же порядок величины». Хотя Максвелл не считает это совпадение достаточно точным, он надеется, что в дальнейших экспериментах соотношение между обеими величинами может быть определено более точно. Во всяком случае имеющиеся данные не опровергают теории




Пустыня — это Бог без людей. Оноре Бальзак
ещё >>